Page 9 of 11
Journal of the American Chemical Society
above, for catalyst B, the MECP must occur after intermediate
NMR facilities at UWꢀMadison are funded by the NSF (CHEꢀ
1
2
3
4
5
6
7
8
formation and this feature “delays” the formation of products
allowing a byꢀproduct shunt to occur through bimolecular colliꢀ
sion of Inttpa with TEMPO. On the other hand, for catalyst A, the
MECP must occur before the formation of intermediates, because
no radical byproducts are observed, with the exception of C=C
bond transposition products seen with substrate 16. Thus, the
potential energy surface for this substrate was examined more
closely. For this substrate, as the allylic C–H bond on 16 breaks in
the (triplet) transition state, electronic reorganization occurs alꢀ
most instantaneously, as compared to the nuclear movement to
form the C–N bond giving products. The HAT nature of the tranꢀ
sition state yields an allylic radical with spin population on both
C1 and C3. Bond formation between C1 and N occurs immediateꢀ
ly on the OS singlet PES to give 16d. The driving force favoring
C1 over C3, which is mostly steric, is due to ∆S‡ (vide infra),
hence giving the thermodynamic product. Indeed, 16d is formed
9208463, CHEꢀ9629688) and NIH (RR08389ꢀ01). The National
Magnetic Resonance Facility at Madison is supported by the NIH
(P41GM103399, S10RR08438, S10RR029220) and the NSF
(BIRꢀ0214394). JFB thanks the Center for Selective C–H Funcꢀ
tionalization supported by the National Science Foundation
(CHE01205646). The computational facility at Madison is supꢀ
ported in part by National Science Foundation Grant CHEꢀ
0840494 and at the UWꢀMadison Center For High Throughput
Computing (CHTC) in the Department of Computer Sciences.
The CHTC is supported by UWꢀMadison, the Advanced Compuꢀ
ting Initiative, the Wisconsin Alumni Research Foundation, the
Wisconsin Institutes for Discovery, and the National Science
Foundation, and is an active member of the Open Science Grid,
which is supported by the National Science Foundation and the
U.S. Department of Energy's Office of Science. U.S. Chimera is
developed by the Resource for Biocomputing, Visualization, and
Informatics at the University of California, San Francisco (supꢀ
ported by NIGMS P41ꢀGM103311).
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
directly (with no intermediates) as the product after OS1TStpy
,
consistent with experimental observations (Table 1 and Scheme 2).
Thus, although C=C double bond transposition in this case was
initially suggestive of a stepwise mechanism with radical interꢀ
mediates, we find computationally that this transposition can ocꢀ
cur via a barrierless recombination and does not necessitate a
longꢀlived diradical intermediate. This reactivity is therefore conꢀ
sistent with an HAT mechanism with barrierless rebound from
A'(N).
REFERENCES
1. For selected reviews on nitrene transfer, see: a) Müller, P.; Fruit, C.
Chem. Rev. 2003, 103, 2905. b) Collet, F.; Lescot, C.; Dauban, P. Chem.
Soc. Rev. 2011, 40, 1926. c) DíazꢀRequejo, M. M.; Pérez, P. J. Chem. Rev.
2008, 108, 3379. d) Collet, F.; Dodd, R.; Dauban, P. Chem. Commun.
2009, 5061.
2. For selected examples of Rhꢀcatalyzed nitrene transfers, see: a) Roizen,
J. L.; Harvey, M. E.; Du Bois, J. Accts. Chem. Res. 2012, 45, 911. b)
Zalatan, D. N.; Du Bois, J. Top. Curr. Chem. 2010, 292, 347. c) Dequirez,
G.; Pons, V.; Dauban, P. Angew. Chem. Int. Ed. 2012, 51, 7384. d) Esꢀ
pino, C. G.; Du Bois, J. Angew. Chem. Int. Ed. 2001, 40, 598. e) Fiori, K.
W.; Du Bois, J. J. Am. Chem. Soc. 2007, 129, 562. f) Collet, F.; Lescot,
C.; Liang, C. G.; Dauban, P. Dalton Trans. 2010, 39. 10401. g) Espino, C.
G.; Fiori, K. W.; Kim, M.; Du Bois, J. J. Am. Chem. Soc. 2004, 126,
15378. h) Zalatan, D. N.; Du Bois, J. J. Am. Chem. Soc. 2008, 130, 9220.
i) Liang, C.; RobertꢀPeillard, F.; Fruit, C.; Muller, P.; Dodd, R. H.;
Dauban, P. Angew. Chem. Int. Ed. 2006, 45, 4641. j) Lescot, C.; Darses,
B.; Collet, F.; Retailleau, P.; Dauban, P. J. Org. Chem. 2012, 77, 7232. k)
Lebel, H.; Spitz, C.; Leogane, O.; Trudel, C.; Parmentier, M. Org.
Lett. 2011, 13, 5460.
Conclusions
In conclusion, we have reported the first examples of simple
silver catalysts capable of tunable, non-directed and intermolecu-
lar chemoselective amination. We have found catalyst systems
that demonstrate complementary chemoselectivities in alkenes
containing sites for both aziridination and C–H amination in
nitrene transfer, largely independent of substrate identities. Comꢀ
putational studies showed that the tunable chemoselectivity beꢀ
t
tween tpa and bu3tpy ligands is a result of the steric profile
around the Agꢀnitrene intermediates. The means to tune the steric
bulk around the nitrene site without changing the electronic strucꢀ
ture of the silverꢀnitrene intermediates, such as the size of the
bound counteranion, could potentially afford an additional tunaꢀ
bility within the same ligand system. Furthermore, two distinct
nitreneꢀtransfer mechanisms are observed in the computational
results, the first involving a very late transitionꢀstate from catalyst
A, followed by a barrierless recombination step that preserves
stereochemistry and the second having a very early transition state
from catalyst B to yield radical intermediates. The major distincꢀ
tion between these two mechanisms appears to be the extent to
which the Ag–N bond breaks during the HAT transition state.
Future studies are focused on the development of increasingly
selective amination catalysts using a broader array of supporting
ligands and counteranions. The ability to correlate the coordinaꢀ
tion geometry of the catalyst with both reaction mechanism pathꢀ
ways and selectivity are goals currently under investigation.
3. Harvey, M. E.; Musaev, D. G.; Du Bois, J. J. Am. Chem. Soc. 2011,
133, 17207.
4. For selected references of Feꢀcatalyzed nitrene transfer: a) Halfen, J. A.
Curr. Org. Chem. 2005, 9, 657. b) Paradine, S. M.; White, M. C. J. Am.
Chem. Soc. 2012, 134, 2036. c) Cramer, S. A.; Jenkins, D. M. J. Am.
Chem. Soc. 2011, 133, 19342. d) Hennessy, E. T.; Liu, R. Y.; Iovan, D.
A.; Duncan, R. A.; Betley, T. A. Chem. Sci. 2014, 5, 1526. e) Fantauzzi,
S.; Caselli, A.; Gallo, E. Dalton Trans. 2009, 5434. f) Nakanishi, M.;
Salit, A.; Bolm, C. Adv. Synth. Catal. 2008, 350, 1835.
5. For selected examples of Coꢀcatalyzed nitrene transfer: a) Lu, H. J.;
Subbarayan, V.; Tao, J. R.; Zhang, X. P. Organometallics 2010, 29, 389.
b) Lu, H.; Zhang, X. P. Chem. Soc. Rev. 2011, 40, 1899. c) Ruppel, J. V.;
Kamble, R. M.; Zhang, X. P. Org. Lett. 2007, 9, 4889.
6. Cuꢀcatalyzed nitrene transfer: a) Bagchi, V.; Paraskevopoulou, P.; Das,
P.; Chi, L.; Wang, Q.; Choudhury, A.; Mathieson, J. S.; Cronin, L.; Parꢀ
due, D. B.; Cundari, T. R.; Mitrikas, G.; Sanakis, Y.; Stavropoulos, P. J.
Am. Chem. Soc. 2014, 136, 11362. b) Duran, F.; Leman, L.; Ghini, A.;
Burton, G.; Dauban, P.; Dodd, R. H. Org. Lett. 2002, 4, 2481. c) Lebel,
H.; Lectard, S.; Parmentier, M. Org. Lett. 2007, 9, 4797. d) Dauban, P.;
Sanière, L.; Tarrade, A.; Dodd, R. H. J. Am. Chem. Soc. 2001, 123, 7707.
e) Srivastava, R. S.; Tarver, N. R.; Nicholas, K. M. J. Am. Chem. Soc.
2007, 129, 15250. f) Barman, D. N.; Nicholas, K. M. Eur. J. Org. Chem.
2011, 5, 908. g) Fructos, M. R.; Trofimenko, S.; DiazꢀRequejo, M. M.;
Perez, P. J. J. Am. Chem. Soc. 2006, 128, 11784.
Supporting Information
Experimental procedures and characterization for all new comꢀ
pounds is included in the Supporting Information. This material is
Corresponding Authors
7. For selected recent examples describing Agꢀcatalyzed nitrene transfer:
a) Maestre, L.; Sameera, W. M. C.; DiaꢀRequejo, M. M.; Maseras, F.;
Perez, P. J. J. Am. Chem. Soc. 2013, 135, 1338. b) Li, Z.; Capretto, D. A.;
Rahaman, R.; He, C. Angew. Chem. Int. Ed. 2007, 46, 5184. c) Gómezꢀ
Emeterio, B. P.; Urbano, J.; DíazꢀRequejo, M. M.; Pérez, P. J. Organome-
tallics 2008, 27, 4126. d) Li, Z. G.; He, C. Eur. J. Org. Chem. 2006, 19,
ACKNOWLEDGMENT
This work was funded through an NSFꢀCAREER Award 1254397
and the Wisconsin Alumni Research Foundation to JMS. The
ACS Paragon Plus Environment