6094
K. Shanab et al. / Bioorg. Med. Chem. Lett. 17 (2007) 6091–6095
cell line development in the past or different experimental
References and notes
settings (e.g., use of the XTT vs MTT detection reagent,
use of different cell counts, etc.). However, the difference in
activity between wild type and resistant cell lines for test
and reference compounds reported herein and the conclu-
sions drawn from these results remain unaffected.
20. For FACS analysis, a FACSCaliburTM cytometer (Becton
Dickinson, Heidelberg, GER) and Mod Fit LT VERITY
(cell cycle analysis software) were used.
21. For DNA intercalation experiments following an in-house
protocol, stock solution of reference and test compounds
at 2–5 lM concentration in 5% DMSO (v/v) were
prepared. After 1:10 (v/v) dilution of the compound stock
in reaction buffer (5 mM NaH2PO4, 5 mM Na2HPO4,
70 mM NaCl, pH 7), the absorbance [Amax] ꢀ1 was
determined in 96-well UV plates (Costar, Acton, MA)
between 230 and 570 nm using a Spectramax 190 plus
reader (Molecular Devices, Sunnyvale, CA). The resulting
curve was compared to a curve generated by using 2 mg/
ml (w/v) calf thymus DNA (Sigma–Aldrich Corp., St.
Louis, MO) solution in reaction buffer as compound
diluent.
1. Vuimo, T. A.; Kulikova, E. V.; Sinauridze, E. I.; Yurkevich, A.
M.; Kravchenko, S. K.; Ataullakhanov, F. I. In New Research
on Biotechnology and Medicine; Egorov, A. M., Zaikov, G.,
Eds.; Nova Science Publishers: New York, 2006; p 87.
2. (a) Dunn, C. J.; Goa, K. L. Drugs Aging 1996, 9, 122; (b)
Wiseman, L. R.; Spencer, C. M. Drugs Aging 1997, 10, 473.
3. Lown, J. W.; Hanstock, C. J. Biomol. Struct. Dyn. 1985, 2,
1097.
4. Gonsette, R. E. Expert Opin. Pharmacother. 2007, 8, 1103.
5. Frishman, W. H.; Sung, H. M.; Yee, H. C.; Liu, L. L.;
Keefe, D.; Einzig, A. I.; Dutcher, J. Curr. Probl. Cancer
1997, 21, 301.
6. Engert, A.; Herbrecht, R.; Santoro, A.; Zinzani, P. L.;
Gorbatchevsky, I. Clin. Lymphoma Myeloma 2006, 7, 152.
7. Cavalletti, E.; Crippa, L.; Mainardi, P.; Oggioni, N.;
Cavagnoli, R.; Bellini, O.; Sala, F. Invest. New Drugs 2007,
25, 87.
8. Krapcho, A. P.; Menta, E. Drugs Future 1997, 22, 641.
9. Sissi, C.; Leo, E.; Moro, S.; Capranico, G.; Mancia, A.;
Menta, E.; Krapcho, A. P.; Palumbo, M. Biochem.
Pharmacol. 2004, 67, 631.
10. Hofheinz, R. D.; Porta, C.; Hartung, G.; Santoro, A.;
Hanauske, A. R.; Kutz, K.; Stern, A.; Barbieri, P.; Verdi,
E.; Hehlmann, R.; Hochhaus, A. Invest. New Drugs 2005,
23, 363.
11. Spreitzer, H.; Puschmann, C. Chem. Monthly, in press.
12. Kitahara, Y.; Nakai, T.; Nakahara, S.; Akazawa, M.;
Shimizu, M.; Kubo, A. Chem. Pharm. Bull. 1991, 39, 2256.
13. Wu, Y. L.; Chuang, C. P.; Lin, P. Y. Tetrahedron 2001, 57,
5543.
14. Spreitzer, H.; Pichler, A.; Holzer, W.; Kratzel, M.; Slanz,
R.; Koulouri, A.; Krenn, P.; Parrer, U.; Szieber, P.
Heterocycles 2001, 54, 111.
15. (a) Cerri, A.; Almirante, N.; Barassi, P.; Benicchio, A.;
Fedrizzi, G.; Ferrari, P.; Micheletti, R.; Quadri, L.; Ragg,
E.; Rossi, R.; Santagostino, M.; Schiavone, A.; Serra, F.;
Zappavigna, M. P.; Melloniet, P. J. Med. Chem. 2000, 43,
2332; (b) Favara, D.; Nicola, M.; Pappalardo, M.;
Bonardi, G.; Luca, C.; Marchini, F.; Sardi, B. Farmaco
[Sci] 1987, 42, 697.
22. All of the final structures were confirmed by 1H NMR, 13
NMR, IR, and MS as the following.
C
Compound 6: Mp = 287 °C;1H NMR (DMSO-d6): d (ppm)
5.89 (s, 1H), 7.48 (br s, 2H), 7.75 (d, J = 4.9 Hz, 1H), 8.99
(d, J = 4.9 Hz, 1H), 9.07 (s, 1H); MS: m/z 174 (M+, 100),
147 (11), 130 (2), 118 (7), 106 (23).
Compound 8: Mp = 148 °C; 1H NMR (CDCl3): d (ppm)
2.30 (s, 6H), 2.73 (t, J = 6.5 Hz, 2H), 4.57 (t, J = 6.5 Hz,
2H), 6.77 (d, J = 2.8 Hz, 1H), 7.10 (d, J = 2.8 Hz, 1H),
7.94 (d, J = 5.0 Hz, 1H), 8.98 (d, J = 5.0 Hz, 1H), 9.37 (s,
1H); MS: m/z 269 (M+, 1), 211 (1), 155 (1), 58 (100).
Compound 9a: Mp = 70 °C; 1H NMR (CDCl3): d (ppm)
2.28 (s, 6H), 2.33 (s, 6H), 2.71 (t, J = 6.5 Hz, 2H), 2.80 (t,
J = 5.9 Hz, 2H), 4.57 (m, 4H), 7.12 (m, 2H), 8.10 (d,
J = 5.4 Hz, 1H), 8.71 (d, J = 5.4 Hz, 1H), 9.42 (s, 1H); 13
C
NMR (CDCl3): d (ppm) 45.6, 46.0, 47.3, 58.2, 59.8, 74.9,
117.0, 121.9, 126.0, 126.1, 131.6, 140.7, 140.9, 150.0, 151.6,
174.3; IR (KBr): mmax 3427, 3100, 2947, 2762, 1639, 1576,
1460, 1427, 1379, 1270 cmÀ1; MS: m/z 355 (M+, 1), 284 (1),
282 (2), 269 (3), 267 (1), 266 (1), 222 (1), 167 (1), 149 (5),
125 (1).
16. Schmidt, M.; Lu, Y.; Liu, B.; Fang, M.; Mendelsohn, J.;
Fan, Z. Oncogene 2000, 19, 2423.
1
Compound 9b: Mp = 154 °C; H NMR (CDCl3): d (ppm)
2.25 (s, 6H), 2.62 (t, J = 6.7 Hz, 2H), 3.81 (s, 1H), 4.04 (t,
J = 4.4 Hz, 2H), 4.43 (t, J = 6.8 Hz, 2H), 4.54 (t,
J = 4.4 Hz, 2H), 6.97 (m, 2H), 7.86 (d, J = 5.3 Hz, 1H),
8.55 (d, J = 5.4 Hz, 1H), 9.20 (s, 1H); 13C NMR (CDCl3):
d (ppm) 45.5, 47.0, 59.5, 61.3, 59.8, 78.1, 111.7, 116.7,
121.5, 125.7, 125.8, 131.5, 140.3, 140.9, 148.6, 151.3, 173.7;
IR (KBr): mmax 3486, 3191, 3123, 2940, 2821, 2767, 1637,
1595, 1577, 1534, 1520, 1479, 1429 cmÀ1; MS: m/z 328
(M+, 1), 284 (1), 270 (1), 240 (1), 226 (1), 222 (1), 209 (1),
198 (2), 193 (1), 181 (1), 170 (1).
17. Scudiero, D. A.; Shoemaker, R. H.; Paull, K. D.; Monks,
A.; Tierney, S.; Nofziger, T. H.; Currens, M. J.; Seniff, D.;
Boyd, M. R. Cancer Res. 1988, 48, 4827.
18. From the readily available wild types LT12, P388, and
L1210, cell lines were established, that were resistant
against standard cancer reference compounds.
Wild type Resistant type
1
Compound 9c: Mp = 140 °C; H NMR (CDCl3): d (ppm)
L1210
P388
LT12
L1210VCR (vincristine resist.)
P388ADR (doxorubicin resist.)
2.28 (s, 6H), 2.71 (t, J = 6.6 Hz, 2H), 4.25 (s, 3H), 4.59 (t,
J = 6.6 Hz, 2H), 7.08 (m, 2H), 8.08 (d, J = 5.4 Hz, 1H),
8.70 (d, J = 5.3 Hz, 1H), 9.40 (s, 1H); 13C NMR (CDCl3):
d (ppm) 45.1, 47.3, 59.8, 64.0, 111.5, 117.0, 121.8, 126.0,
126.1, 131.5, 140.6, 140.7, 148.9, 151.6, 174.3; IR (KBr):
LT12MDR (Ectopic expression of human
MDR1 K. Nooter, University of Rotterdam)
m
max 3422, 3118, 2972, 2934, 2818, 2767, 1639, 1576, 1481,
1425, 1381 cmÀ1; MS: m/z 298 (M+, 1), 208 (1), 195 (1),
180 (1), 155 (1), 154 (1), 140 (1), 127 (1).
19. It might attract attention that the activity of doxorubicin
reported herein (see Table 2) differs from results published
elsewhere (e.g., Furusawa, S.; Nakano, S.; Wu, J.;
Sakaguchi, S.; Takayanagi, M.; Sasaki, K. I.; Satoh S.;
J. Pharm. Pharmacol. 2001, 53, 1029). After carefully re-
evaluating and confirming the results published herein,
reasons for these differences might be found in different
Compound 9d: Mp (decomp.) = 173 °C; 1H NMR
(CDCl3): d (ppm) 2.51 (s, 6H), 3.10 (t, J = 5.5 Hz, 2H),
4.72 (t, J = 5.4 Hz, 2H), 7.03 (m, 2H), 7.57 (d, J = 5.4 Hz,
1H), 8.33 (d, J = 5.4 Hz, 1H), 9.20 (s, 1H); 13C NMR
(CDCl3): d (ppm) 45.1, 46.0, 59.7, 112.5, 116.1, 122.7,
125.7, 126.0, 130.9, 140.1, 141.2, 148.3, 150.8, 174.3; IR