Chemistry Letters Vol.33, No.7 (2004)
883
acetonitrile at 80 ꢁC. Furthermore, we have examined the possi-
.
bility of CeCl3 7H2O functioning catalytically or at least, in less
than stoichiometric amounts. But best results were obtained with
8
9
a) J. S. Yadav, B. V. S. Reddy, K. B. Reddy, and M.
Satyanarayana, Tetrahedron Lett., 43, 7009 (2002). b) J. S.
Yadav, B. V. S. Reddy, M. S. K. Reddy, and G. Sabitha,
Synlett, 2001, 1134. c) J. S. Yadav and B. V. S. Reddy,
Synlett, 2000, 1275.
.
an equimolar ratio of CeCl3 7H2O. There are many advantages
in the use of cerium(III) chloride for this transformation, which
avoids the use of strongly acidic or basic conditions. The method
does not require the use of expensive or corrosive reagents and
no precautions need to be taken to exclude moisture from the re-
action medium. The scope and generality of this procedure is il-
lustrated with respect to various diazoketones and the results are
summerized in the Table 1.
Experimental procedure: A mixture of ꢀ-diazoketone (5
mmol), sodium azide or potassium thiocyanate (6 mmol)
.
CeCl3 7H2O (5 mmol) in acetonitrile (10 mL) was stirred at
80 ꢁC for a specified time as required to complete the reaction
(Table 1). After complete conversion, as indicated by TLC,
the reaction mixture was diluted with water (15 mL) and ex-
tracted with ethyl acetate (2 ꢂ 15 mL). The combined organic
layers were dried over anhydrous Na2SO4, concentrated in
vacuo and purified by column chromatography on silica gel
(Merck, 100–200 mesh, ethyl acetate-hexane, 1:9) to afford
pure 2-azidoketone or 2-ketothiocyanate. Spectral data for
the compounds 3e: Yellow solid, mp 102–103 ꢁC, IR
(KBr): ꢂ 2930, 2854, 2100, 1685, 1606, 1598, 1451, 1389,
1249, 981, 922, 772, 550 cmꢃ1. 1H NMR (200 MHz, CDCl3):
ꢃ 2.45 (s, 3H), 4.78 (s, 2H), 7.38 (d, 2H, J ¼ 8:0 Hz), 7.85 (d,
2H, J ¼ 8:0 Hz). 13C NMR (Proton decoupled, 75 MHz,
CDCl3): ꢃ 21.6, 44.6, 111.8, 126, 129.4, 131.7, 132.5,
133.3, 140.0, 193.0. EI–MS: m=z: 191 Mþ, 155, 141, 119,
105, 91, 77, 65, 39. 3j: Colourless solid, mp 41–42 ꢁC, IR
In summary, we disclose a new procedure for the prepara-
tion of 2-azidoketones and 2-ketothiocyanates using CeCl3
.
7H2O as a novel catalyst under mild conditions. The notable fea-
tures of this procedure are high conversions, simplicity in oper-
ation, cleaner reaction profiles, and ready availability of reagents
at low cost which make it a useful and attractive strategy for the
synthesis of 2-azidoketones and 2-ketothiocyanates of synthetic
importance.
BVS thank CSIR, New Delhi for the award of fellowship.
References and Notes
1
a) V. J. Majo and P. T. Perumal, J. Org. Chem., 63, 7136
(1998). b) X. Fan and Y. Zhang, Tetrahedron Lett., 43,
1863 (2002) c) M. V. R. Reddy, R. Kumareswaran, and
Y. D. Vankar, Tetrahedron Lett., 36, 6751 (1995).
(KBr): ꢂ 2923, 2852, 2105, 1734, 1637, 1467, 1190 cmꢃ1
.
1H NMR (200 MHz, CDCl3): ꢃ 0.80 (t, 3H, J ¼ 6:8 Hz),
1.20–1.35 (m, 20H), 1.45–1.65 (m, 2H), 2.40 (t, 2H, J ¼
6:7 Hz), 3.80 (s, 2H). 13C NMR (Proton decoupled. 75 MHz,
CDCl3): ꢃ 14.0, 22.6, 23.5, 24.9, 29.0, 29.1, 29.3, 29.4,
29.6, 31.9, 34.3, 39.6, 48.1, 202. EI–MS: m=z: 267 Mþ,
257, 212, 127, 102, 97, 88, 63, 43. 3l: Liquid, IR (KBr):
ꢂ 3448, 2924, 2107, 1713, 1650, 1459, 1278, 1141, 951,
2
a) E. J. Corey, R. K. Bakshi, S. Shibata, C. P. Chen, and V. K.
Singh, J. Am. Chem. Soc., 109, 7925 (1987). b) J. Takehara, S.
Hashiguchi, A. Fujii, S.-I. Inoue, T. Ikariya, and R. Noyori,
Chem. Commun., 1996, 233. c) H. C. Brown, U. S. Racherla,
and P. J. Pellechia, J. Org. Chem., 55, 1868 (1990).
a) B. L. Chng and A. Ganesan, Bioorg. Med. Chem. Lett., 7,
1511 (1997). b) P. Van de Wenge and J. Collin, Tetrahedron
Lett., 36, 1649 (1995).
a) A. Padwa and M. D. Weingarten, Chem. Rev., 96, 223
(1996). b) A. Padwa, Top. Curr. Chem., 189, 121 (1997). c)
M. A. Calter, Curr. Org. Chem., 1, 37 (1997).
a) T. Ye and M. A. McKervey, Chem. Rev., 94, 1091 (1994).
b) A. Padwa and S. F. Hornbuckle, Chem. Rev., 91, 263
(1991). c) M. P. Doyle, Chem. Rev., 86, 919 (1986).
T. Imamoto, ‘‘Lanthanides in Organic Synthesis,’’ Academic
Press, New York (1994).
1
770, 671 cmꢃ1. H NMR (200 MHz, CDCl3): ꢃ 1.25 (s, 3H,
3
4
5
–CH3), 1.35 (s, 3H, –CH3), 2.23 (dd, 1H, J ¼ 8:0, 8.6 Hz,
–CH–CH=CClCF3), 2.26 (d, 1H, J ¼ 8:0 Hz, –CH–CO–),
3.90 (s, 2H, –CH2–), 6.90 (d, 2H, J ¼ 8:6 Hz, –CH=
CClCF3). 13C NMR (Proton decoupled. 75 MHz, CDCl3): ꢃ
28.5, 29.6, 34.4, 37.4, 59.1, 111.2, 118.4, 121.6, 122.0,
122.9, 128.4, 129.0, 200.6. EI–MS: m=z: 281 Mþ, 224, 197,
184, 161, 141, 97, 71, 58, 41. 3m: Liquid, IR (KBr): ꢂ
3432, 2926, 2100, 1699, 1653, 1410, 1278, 1140, 953, 771
cmꢃ1 1H NMR (200 MHz, CDCl3): ꢃ 1.25 (s, 3H, –CH3),
.
6
7
1.35 (s, 3H, –CH3), 2.30 (dd, 1H, J ¼ 8:1, 8.5 Hz, –CH–CH=
CClCF3), 2.35 (d, 1H, J ¼ 8:1 Hz, –CH–CO–), 3.99–4.05
(ABq, 2H, J ¼ 13:7 Hz, –CH2–), 6.83 (d, 1H, J ¼ 8:5 Hz,
–CH=CClCF3). 13C NMR (Proton decoupled. 75 MHz,
CDCl3): ꢃ 28.3, 33.6, 35.2, 38.9, 45.2, 111.0, 118.3, 121.9,
122.4, 122.9, 128.4, 128.5, 197.4. EI–MS: m=z: 297 Mþ,
259, 226, 198, 184, 162, 142, 133, 91, 72, 60, 52, 41.
a) A. Cappa, E. Marcantoni, E. Torregiani, G. Bartoli, M. C.
Bellucci, M. Bosco, and L. Sambri, J. Org. Chem., 64, 5696
(1999). b) E. Marcantoni, F. Nobili, G. Bartoli, M. Bosco, and
L. Sambri, J. Org. Chem., 62, 4183 (1997). c) M. Di Dea,
E. Marcantoni, E. Torregiani, G. Bartoli, M. C. Bellucci,
M. Bosco, and L. Sambri, J. Org. Chem., 65, 2830 (2000).
Published on the web (Advance View) June 14, 2004; DOI 10.1246/cl.2004.882