E.G. Rodrigues et al. / Journal of Catalysis 281 (2011) 119–127
127
regeneration of hydroxide ions [34]. In fact, very poor or no activity
Acknowledgements
is observed when using gold catalysts without a relatively high
concentration of added base [24]. Glycerol oxidation is aided by
high-pH conditions, since the hydroxide species adsorbed over
gold have the ability to facilitate the activation of both the C-H
and the O–H bonds of glycerol (also adsorbed on the catalyst sur-
face), leading to the addition of electrons to the metal surface [34]
This work was carried out with the support of Fundação para a
Ciência e a Tecnologia (FCT) under research fellowship BD/45280/
2008 (E.G. Rodrigues) and FCT/FEDER in the framework of Program
COMPETE (project PTDC/EQU-ERQ/101456/2008). It was also par-
tially supported by Acção Integrada Luso-Espanhola N° E28/11
(Portugal) and Acciones Integradas with reference number
AIB2010PT-00377 (Spain). X. Chen acknowledges Ramón y Cajal
contract from Ministry of Science and Innovation of Spain.
(
see Fig. 7; step I). In this way, the oxidation mechanism does not
involve the dissociation of molecular oxygen to atomic oxygen. In-
stead, activation of O occurs by the formation and dissociation of
2
peroxide and hydrogen peroxide intermediates on the metal sur-
face, according to the following mechanism [34]:
References
ꢂ
ꢂ
ꢂ
ꢂ
O þ H
2
O ! HOO þ HO
ð2Þ
ð3Þ
ð4Þ
2
[1] C.H.C. Zhou, J.N. Beltramini, Y.X. Fan, G.Q.M. Lu, Chem. Soc. Rev. 37 (2008) 527.
[
2] K. Golz-Berner, L. Zastrow, US Patent 10 570 031, 2007.
ꢂ
ꢂ
ꢂ
ꢂ
HOO þ H
2
O ! H
2
O þ HO
[3] P. McMorn, G. Roberts, G.J. Hutchings, Catal. Lett. 63 (1999) 193.
2
[
4] M. Pagliaro, R. Ciriminna, H. Kimura, M. Rossi, C. Della Pina, Angew. Chem. Int.
Ed. 46 (2007) 4434.
HO þ eꢁ $ HO þꢂ
where ꢂ represents a site on the metal surface. The last step allows
for the removal of electrons added to the surface during the adsorp-
tion of hydroxide ions and regenerates these species. In that study
ꢂ
ꢁ
[
[
5] S. Demirel, K. Lehnert, M. Lucas, P. Claus, Appl. Catal. B 70 (2007).
6] K. Musialska, E. Finocchio, I. Sobczak, G. Busca, R. Wojcieszak, E. Gaigneaux, M.
Ziolek, Appl. Catal. A 384 (2010) 70.
[7] A. Villa, A. Gaiassi, I. Rossetti, C.L. Bianchi, K. van Benthem, G.M. Veith, L. Prati,
J. Catal. 275 (2010) 108.
[
[
8] L. Prati, M. Rossi, J. Catal. 176 (1998) 552.
9] F. Porta, L. Prati, J. Catal. 224 (2004) 397.
[
34], the support was not considered to be involved in the mecha-
nism. However, the presence of delocalized -electrons in basic
p
[10] G.C. Bond, D.T. Thompson, Catal. Rev. – Sci. Eng. 41 (1999) 319.
[
11] W.C. Ketchie, Y.-L. Fang, M.S. Wong, M. Murayama, R.J. Davis, J. Catal. 250
2007) 94.
12] F. Porta, L. Prati, M. Rossi, S. Coluccia, G. Martra, Catal. Today 61 (2000) 165.
carbon supports leads to a high electronic mobility, whereas oxy-
gen-containing functional groups (electron-withdrawing groups)
decrease the electron density and the electrical conductivity
(
[
[13] S. Demirel, P. Kern, M. Lucas, P. Claus, Catal. Today 122 (2007) 292.
[
[
14] E. Papirer, S. Li, J.B. Donnet, Carbon 25 (1987) 243.
15] J.L. Figueiredo, M.F.R. Pereira, M.M.A. Freitas, J.J.M. Órfão, Carbon 37 (1999)
[
35,36]. The mobility of electrons to the basic support could poten-
tially reduce the excess of negative charge on gold and enhance the
possibility of further hydroxide bonding (Fig. 7, step II), whereas the
transition of this electrons from the support to the metal enhance
the regeneration of the hydroxide ions (Eqs. (2)–(4) and Fig. 7, steps
III and IV). Therefore, the mobility of the electrons from and to the
gold surface could potentially promote both adsorption and regen-
eration of hydroxide ions and thus the catalytic performance.
1
379.
[16] J.L. Figueiredo, M.F.R. Pereira, M.M.A. Freitas, J.J.M. Órfão, Ind. Eng. Chem. Res.
6 (2007) 4110.
[
[
4
17] J.A. Menendez, J. Phillips, B. Xia, L.R. Radovic, Langmuir 12 (1996) 4404.
18] Y. Onal, S. Schimpf, P. Claus, J. Catal. 223 (2004) 122.
[19] E.G. Rodrigues, S.A.C. Carabineiro, X. Chen, J.J. Delgado, J.L. Figueiredo, M.F.R.
Pereira, J.J.M. Órfão, Catal. Lett. 141 (2011) 420.
20] C.Y. Yin, M.K. Aroua, W.M.A.W. Daud, Sep. Purif. Technol. 52 (2007) 403.
21] V. Gómez-Serrano, M. Acedo-Ramos, A.J. López-Peinado, C. Valenzuela-
Calahorro, Thermochim. Acta 291 (1997) 109.
[
[
[
[
22] C. Moreno-Castilla, M.V. Lopez-Ramon, F. Carrasco-Marin, Carbon 38 (2000)
4
. Conclusions
1995.
23] C.A. Leon y Leon, J.M. Solar, V. Calemma, L.R. Radovic, Carbon 30 (1992) 797.
A strong effect of the activated carbon surface chemistry on the
[24] S. Demirel-Gülen, M. Lucas, P. Claus, Catal. Today 102–103 (2005) 166.
[
[
[
[
25] S. Carrettin, P. McMorn, P. Johnston, K. Griffin, C.J. Kiely, G.J. Hutchings, Phys.
Chem. Chem. Phys. 5 (2003) 1329.
26] Y.A. Ryndin, O.S. Alekseev, P.A. Simonov, V.A. Likholobov, J. Mol. Catal. 55
(1989) 109.
27] S. Carrettin, P. McMorn, P. Johnston, K. Griffin, C.J. Kiely, G.A. Attard, G.J.
Hutchings, Top. Catal. 27 (2004) 131.
28] W.C. Ketchie, M. Murayama, R.J. Davis, J. Catal. 250 (2007) 264.
activity of Au/AC catalysts for glycerol oxidation was observed.
Gold particles with similar average sizes resulted in different per-
formances, depending on the amount of oxygenated groups on the
surface of the support used. As a result, the oxygen content on the
surface is a factor of large influence in the reaction. Basic oxygen-
free supports, characterized by a high density of free
p
-electrons,
[29] D. Wang, A. Villa, F. Porta, D. Su, L. Prati, Chem. Commun. (2006) 1956.
[30] N. Dimitratos, J.A. Lopez-Sanchez, D. Lennon, F. Porta, L. Prati, A. Villa, Catal.
Lett. 108 (2006) 147.
lead to an enhancement of the gold catalyst activity. These charac-
teristics can easily be achieved by thermal treatments at high tem-
peratures, which remove the oxygen-containing surface groups.
The role of the activated carbon surface chemistry was explained
on the basis of a recent published mechanism, by considering the
capability of oxygen-free supports to promote electron mobility.
The prepared catalysts lead to a high total selectivity to products
of commercial interest (GLYCEA + DIHA) of about 80%.
[
31] J. Yang, Y.J. Guan, T. Verhoeven, R. van Santen, C. Li, E.J.M. Hensen, Green Chem.
1 (2009) 322.
[32] J.J. Zhu, S.A.C. Carabineiro, D. Shan, J.L. Faria, Y.J. Zhu, J.L. Figueiredo, J. Catal.
74 (2010) 207.
1
2
[
[
33] H.H. Kung, M.C. Kung, C.K. Costello, J. Catal. 216 (2003) 425.
34] B.N. Zope, D.D. Hibbitts, M. Neurock, R.J. Davis, Science 330 (2010) 74.
[35] D. Sebastián, I. Suelves, R. Moliner, M.J. Lázaro, Carbon 48 (2010) 4421.
36] Z. Hashisho, M.J. Rood, S. Barot, J. Bernhard, Carbon 47 (2009) 1814.
[