Notes and references
1 P. M. Budd, Science, 2007, 316, 210–211.
2 N. B. McKeown, P. M. Budd, K. J. Msayib, B. S. Ghanem,
H. J. Kingston, C. E. Tattershall, S. Makhseed, K. J. Reynolds
and D. Fritsch, Chem.–Eur. J., 2005, 11, 2610–2620.
3 C. Weder, Angew. Chem., Int. Ed., 2008, 47, 448–450.
4 (a) N. B. McKeown and P. M. Budd, Chem. Soc. Rev., 2006, 35,
675–683; (b) N. B. McKeown, B. Gahnem, K. J. Msayib,
P. M. Budd, C. E. Tattershall, K. Mahmood, S. Tan, D. Book,
H. W. Langmi and A. Walton, Angew. Chem., Int. Ed., 2006, 45,
1804–1807; (c) B. S. Ghanem, K. J. Msayib, N. B. Mckeown,
K. D. M. Harris, Z. G. Pang, P. M. Budd, A. Butler, J. Selbie,
D. Book and A. Walton, Chem. Commun., 2007, 67–69.
5 (a) A. P. Cote
A. J. Matzger and O. M. Yaghi, Science, 2005, 310, 1166–1170;
(b) H. M. El-Kaderi, J. R. Hunt, J. L. Mendoza-Cortes, A. P. Cote
R. E. Taylor, M. O’Keeffe and O. M. Yaghi, Science, 2007, 316,
268–272; (c) A. P. Cote H. M. EI-Kaderi, H. Furukawa,
´
, A. I. Benin, N. W. Ockwig, M. O’Keeffe,
´
´
,
´
,
J. R. Hunt and O. M. Yaghi, J. Am. Chem. Soc., 2007, 129,
12914–12915; (d) P. Kuhn, M. Antonietti and A. Thomas, Angew.
Chem., Int. Ed., 2008, 47, 3450–3453; (e) P. Kuhn, A. Forget,
D. S. Su, A. Thomas and M. Antonietti, J. Am. Chem. Soc., 2008,
130, 13333–13337.
Fig. 3 (a) Nitrogen adsorption/desorption isotherms at 77 K for
cured TCS obtained from different solution concentrations; (b) apparent
micropore size distribution calculated by the Horvath–Kawazoe
method (carbon slit-pore model) for cured TCS obtained from
different solution concentrations (2%, 5%, 10%, 20%).
6 (a) M. P. Tsyurupa and V. A. Davankov, React. Funct. Polym.,
2006, 66, 768–779; (b) J. Germain, J. Hradil, J. M. J. Frechet and
´
F. Svec, Chem. Mater., 2006, 18, 4430; (c) J. H. Ahn, J. E. Jang,
C. G. Oh, S. K. Ihm, J. Cortez and D. C. Sherrington, Macro-
molecules, 2006, 39, 627; (d) J. Germain, J. M. J. Frechet and
´
F. Svec, J. Mater. Chem., 2007, 17, 4989; (e) C. D. Wood, B. Tan,
A. Trewin, H. J. Niu, D. Bradshaw, M. J. Rosseinsky,
exhibiting the characteristics of substantially microporous
materials. The BET surface area of cured TCS increases
with the reduction in reaction concentration. Typically, a
surface area of 538 m2 gÀ1 can be obtained in 2 wt% solution
(ESIw, Fig. S3).
Y. Z. Khimyak, N. L. Campbell, R. Kirk, E. Stochel and
¨
A. I. Cooper, Chem. Mater., 2007, 19, 2034–2048;
´
(f) J. Germain, F. Svec and J. M. J. Frechet, Chem. Mater.,
2008, 20, 7069–7076.
Fig. 3b shows the apparent micropore size distribution for
the cured TCS as calculated by the Horvath–Kawazoe
method. It can be seen that the pore size distribution for the
sample prepared in 2 wt% solution is mainly biased towards
pores in the range 4–6 A. Obviously, with the reduction in
reaction concentration, a smaller and narrower pore distribution
can be obtained. This may be ascribed to the improved
development of branched particles in dilute solution, resulting
in a more uniform network. It is important to note the
limitations of the N2 adsorption technique, because the N2
molecule with a kinetic diameter of 3.64 A finds it difficult
to enter the ultramicropore (o5 A).16 So we believe that
the actual surface area of cured TCS is far higher than the
value reported here.
7 (a) J. X. Jiang, F. Su, A. Trewin, C. D. Wood, N. L. Campbell,
H. Niu, C. Dickinson, A. Y. Ganin, M. J. Rosseinsky,
Y. Z. Khimyak and A. I. Cooper, Angew. Chem., Int. Ed., 2007,
46, 8574–8578; (b) J. X. Jiang, F. Su, A. Trewin, C. D. Wood,
N. L. Campbell, H. Niu, J. T. A. Jones, Y. Z. Khimyak and
A. I. Cooper, J. Am. Chem. Soc., 2008, 130, 7710–7720.
8 (a) A. G. Loera, F. Cara, M. Dumon and J. P. Pascult, Macro-
molecules, 2002, 35, 6291–6297; (b) J. Kiefer, J. G. Hilborn,
J. L. Hedrick, H. J. Cha, D. Y. Yoon and J. C. Hedrick, Macro-
molecules, 1996, 29, 8546–8548.
9 K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou,
R. A. Pierotti, J. Rouquerol and T. Siemieniewska, Pure Appl.
Chem., 1985, 57, 603.
10 S. G. Yuan, S. Kirklin, B. Dorney, D. J. Liu and L. P. Yu,
Macromolecules, 2009, 42, 1554–1559.
11 H. B. Park, C. H. Jung, Y. M. Lee, A. J. Hill, S. J. Pas,
S. T. Mudie, E. V. Wagner, B. D. Freeman and D. J. Cookson,
Science, 2007, 318, 254–257.
In summary, we have demonstrated a novel facile approach
to introduce ultramicropores into a common thermosetting
resin. In this way, it may bring about numerous microporous
or mesoporous polymers through choice of initial monomers
with special geometries. We are currently exploring additional
polycyanurate networks to obtain larger surfaces and con-
ducting systematic studies on their applications in hydrogen
storage and size-selective molecular sieve materials.
12 (a) F. Schuth and W. Schmidt, Adv. Mater., 2002, 14, 629–638;
¨
(b) M. E. Davis, Nature, 2002, 417, 813–821.
13 I. Hamerton, Chemistry and Technology of Cyanate Ester Resins,
Blackie, Glasgow, 1994.
14 (a) M. F. Grenier-Loustalot, C. Lartigau, F. Metras and
P. Grenier, J. Polym. Sci., Part A: Polym. Chem., 1996, 34, 2955;
(b) K. F. Lin and J. Y. Shyu, J. Polym. Sci., Part A: Polym. Chem.,
2001, 39, 3085–3092.
15 F. Rouqueol, J. Roquerol and K. Sing, Adsorption by Powders and
Porous Solids, Academic Press, London, 1999.
16 (a) M. Dinca and J. R. Long, J. Am. Chem. Soc., 2005, 127,
9376–9377; (b) S. Q. Ma, D. F. Sun, X. S. Wang and H. C. Zhou,
Angew. Chem., Int. Ed., 2007, 46, 2458–2462.
The authors are grateful for the financial support of the
National Science Foundation of China (No. 50673014 and
No. 20874007) and the Program for New Century Excellent
Talents in University of China (No. NCET-06-0280).
ꢀc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 5027–5029 | 5029