C O M M U N I C A T I O N S
Table 1. Results of the Rhodium-Catalyzed Arylation of ArCHO
with Ar′B(OH)2 in Water Solvent
In conclusion, we have characterized a π-bonded rhodium
quinonoid complex that functions as a good catalyst for the coupling
of arylboronic acids and aldehydes. The catalysis is heterobimetallic
in that both the transition metal and concomitant alkali metal
counterion play an integral part in the reaction. In addition, the
anionic quinonoid catalyst itself plays a bifunctional role by acting
as a ligand to the boronic acid and as a Lewis acid receptor site for
the aryl group in the requisite transmetalation.
a
additives
(equiv)
T
time yield
b
entry
aldehyde
catalyst
(
°C) (h)
(%)
+
-
NRc
NR
NR
97
1
2
C
C
C
C
C
C
C
C
C
C
C
C
C
C
6
6
6
6
6
6
6
6
6
6
6
6
6
6
H
H
H
H
H
H
H
H
H
H
H
H
H
H
5
5
5
5
5
5
5
5
5
5
5
5
5
5
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
1 BF
4
none
none
none
95
95
75
3
3
3
3
3
d
+
-
-
-
-
-
1 BF
4
4
4
4
4
+
3
4
5
6
7
8
9
0
1
2
3
4
1 BF
+
1 BF
KOH (1.2)
75
+
+
-
4
1 BF
K BF
(1.2) 75
NR
+
1 BF
none
none
none
none
none
none
none
50 16 NR
+
-
K 3
95
75
60
50
3
3
3
3
96
93(90)
81
Acknowledgment. We are grateful to the donors of the
Petroleum Research Fund, administered by the American Chemical
Society, and to the National Science Foundation (CHE-0308640)
for support of this research.
+
-
-
-
-
-
-
-
K 3
+
K 3
+
1
1
1
1
1
K 3
48
+
K 3
50 16 84
25 16 19
+
K 3
+
K 3
18-C-6 (0.075) 75
3
3
14
24
Supporting Information Available: Experimental details, char-
acterization and crystallographic (CIF) data, which have also been
deposited with the Cambridge Crystallographic Data Center as registry
number CCDC 274874-274875. This material is available free of
charge via the Internet at http://pubs.acs.org.
+
+
-
4
K 3
n-Bu
4
N BF
75
(0.075)
+
-
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
C
6
C
6
C
6
C
6
C
6
C
6
C
6
C
6
C
6
H
5
H
5
H
5
H
5
H
5
H
5
H
5
H
5
H
5
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
K (18-C-6)3
none
none
none
none
none
none
75
75
50
3
3
3
13
2
96(91)
+
-
n-Bu
4
-
N 3
+
Li 3
+
-
Li 3
25 16 40
75
75
[Rh(COD)Cl]
[Rh(COD)] BF
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
NR
NR
1
99
References
+
-
4
+
-
[Rh(COD)
[Rh(COD)
none
2
] BF
4
4
KOH (0.025) 75
(1) (a) Pierpont, C. G.; Langi, C. W. Prog. Inorg. Chem. 1994, 41, 331. (b)
Ebadi, M.; Lever, A. B. P. Inorg. Chem. 1999, 38, 467. (c) Coenzyme Q:
Biochemistry, Bioenergetics and Clinical Applications of Ubiquinone;
Lenaz, G., Ed.; Wiley: New York, 1985.
+
-
2
] BF
KOH (1.2)
KOH (1.2)
none
none
none
none
none
none
none
75
75
75
75
75
75
75
75
75
75
75
75
NR
+
-
-
-
-
-
-
-
-
-
-
4-MeOC
2,4,6-Me
4-MeC
4-ClC
4-PhC
4-O NC
6
H
4
CHO
K 3
81(78)
69(68)
99(97)
99(97)
98(93)
99(92)
96(91)
94(90)
20
(
2) (a) Huang, Y.-S.; Sabo-Etienne, S.; He, X.-D.; Chaudret, B. Organome-
tallics 1992, 11, 303. (b) Koelle, U.; Weissch a¨ del, C.; Englert, U. J.
Organomet. Chem. 1995, 490, 101. (c) Schumann, H.; Arif, A. M.;
Richmond, T. G. Polyhedron 1990, 9, 1677.
+
3
C
H
6 2
CHO K 3
+
6
H
4
CHO
CHO
CHO
CHO
K 3
+
6
H
4
K 3
+
6
H
4
K 3
(3) (a) Sun, S.; Carpenter, G. B.; Sweigart, D. A. J. Organomet. Chem. 1996,
512, 257. (b) Le Bras, J.; Amouri, H.; Vaissermann, J. Organometallics
1998, 17, 1116. (c) Oh, M.; Carpenter, G. B.; Sweigart, D. A. Organo-
metallics 2002, 21, 1290. (d) Moussa, J.; Guyard-Duhayon, C.; Herson,
P.; Amouri, H.; Rager, M. N.; Jutand, A. Organometallics 2004, 23, 6231.
+
2
6
H
4
K 3
e
f
+
C
C
C
C
6
6
6
6
H
5
5
5
5
CHO
CHO
CHO
CHO
K 3
+
H
H
H
K 3
none
none
none
g
h
+
K 3
(
e) Fairhurst, G.; White, C. J. Chem. Soc., Dalton Trans. 1979, 1531.
+
K 3
2
(
4) See Supporting Information for details.
(
5) The ability of a quinone complex to function as an organometalloligand
a
has been demonstrated in the case of (η -benzoquinone)Mn(CO) . See:
4
-
Conditions: 2 mL of water, 0.025 mmol of catalyst, 1.0 mmol of
3
Oh, M.; Carpenter, G. B.; Sweigart, D. A. Acc. Chem. Res. 2004, 37, 1.
aldehyde substrate, 1.2 mmol of Ar′B(OH)2 (Ar′ ) C6H5 for entries 1-29).
b
d
c
(6) (a) Casey, C. P.; Johnson, J. B.; Singer, S. W.; Cui, Q. J. Am. Chem. Soc.
2005, 127, 3100. (b) Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997,
Yield determined by NMR; isolated yields in parentheses. No reaction.
e
f
Solvent was p-dioxane (2 mL). Ar′ ) 4-MeOC6H4B(OH)2. Ar′ )
-MeC6H4B(OH)2. Ar′ ) 4-ClC6H4B(OH)2. Ar′ ) 4-O2NC6H4B(OH)2.
3
0, 97. (c) Josephsohn, N. S.; Kuntz, K. W.; Snapper, M. L.; Hoveyda,
g
h
4
A. H. J. Am. Chem. Soc. 2001, 123, 11594. (d) Mermerian, A. H.; Fu, G.
C. J. Am. Chem. Soc. 2003, 125, 4050.
base (e.g., compare entries 20 and 22).8-10 It has been debated
(7) X-ray data for this salt were (to date) of only moderate quality, but
nevertheless sufficient to establish the connectivity shown.
whether the base serves to increase the rate of transmetalation from
boron to the transition metal catalyst by binding to the former or
by binding to the latter. Recent theoretical studies suggest that the
(
8) (a) Suzuki, A. Acc. Chem. Res. 1982, 15, 178. (b) Miyaura, N.; Suzuki,
A. Chem. ReV. 1995, 95, 2457.
(9) (a) Sakai, M.; Ueda, M.; Miyaura, N. Angew. Chem., Int. Ed. 1998, 37,
3
279. (b) Ueda, M.; Miyaura, N. J. Org. Chem. 2000, 65, 4450. (c)
-
hard base OH functions by binding to the electrophilic boron, and
F u¨ rstner, A.; Krause, H. AdV. Synth. Catal. 2001, 343. (d) Pucheault, M.;
Darses, S.; Genet, J.-P. J. Am. Chem. Soc. 2004, 126, 15356.
13
that this increases the rate of subsequent transmetalation. The data
(
10) (a) Takaya, Y.; Ogasawara, M.; Hayashi, T. J. Am. Chem. Soc. 1998,
+
-
+ -
in Table 1 show that K 3 and Li 3 are effective catalysts without
120, 5579. (b) Batey, R. A.; Thadani, A. N.; Smil, D. V. Org. Lett. 1999,
1, 1683. (c) Ramnauth, J.; Poulin, O.; Bratovanov, S. S.; Rakhit, S.;
the necessity of adding an external base. From this, we conclude
Maddaford, S. P. Org. Lett. 2001, 3, 2571. (d) Kuriyama, M.; Nagai, K.;
Yamada, K.; Miwa, Y.; Taga, T.; Tomioka, K. J. Am. Chem. Soc. 2002,
124, 8932. (e) Hayashi, T.; Takahashi, M.; Takaya, Y.; Ogasawara, M. J.
Am. Chem. Soc. 2002, 124, 5052. (f) Yoshida, K.; Ogasawara, M.; Hayashi,
T. J. Am. Chem. Soc. 2002, 124, 10984. (g) Itooka, R.; Iguchi, Y.; Miyaura,
N. J. Org. Chem. 2003, 68, 6000. (h) Duursma, A.; Boiteau, J.-G.; Kefort,
L.; Boogers, J. A. F.; de Vries, A. H. M.; de Vries, J. G.; Minnaard, A.
J.; Feringa, B. L. J. Org. Chem. 2004, 69, 8045.
-
that the 3 complex itself functions as the base by binding to the
14
boron via the quinonoid oxygens, possibly as depicted in 5. The
ability of the quinone ring system to undergo facile hapticity
4
5
-
changes (η f η , etc.) may play a role in the ability of 3 to
function as an organometalloligand in this manner. We conclude
-
(11) Sammis, G. M.; Danjo, H.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126,
that catalyst 3 is able to act in a bifunctional (and cooperative)
9
928.
manner as has recently been suggested for other types of catalytic
(
12) (a) Shibasaki, M.; Yoshikawa, N. Chem. ReV. 2002, 102, 2187. (b)
6
-
Yamagiwa, N.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2003,
reactions. In the present case, the binding of 3 to the boronic
acid assists the transmetalation step by decreasing the electrophi-
licity of the boron and by placing the transition metal in the vicinity
of the transferring group (Ar′).15
1
25, 16178. (c) Li, C.; Eidjaja, E.; Garland, M. J. Am. Chem. Soc. 2003,
25, 5540. (d) Guo, N.; Li, L.; Marks, T. J. J. Am. Chem. Soc. 2004, 126,
1
6542. (e) Comte, V.; Le Gendre, P.; Richard, P.; Mo ¨ı se, C. Organome-
tallics 2005, 24, 1439.
(
(
(
13) Braga, A. A. C.; Morgon, N. H.; Ujaque, G.; Maseras, F. J. Am. Chem.
Soc. 2005, 127, ASAP.
14) 1H NMR spectra of PhB(OH)
in D
indicate that an interaction occurs.
O with and without K+3- present
2
2
15) It should be noted that some Rh-catalyzed Suzuki-Miyaura couplings
with suitable phosphine ligands do not require stoichiometric external
9
a,b
base.
JA0537981
J. AM. CHEM. SOC.
9
VOL. 127, NO. 35, 2005 12239