Journal of the American Chemical Society
Page 6 of 8
1
2
3
4
5
6
7
8
9
Conditions. Angew. Chem., Int. Ed. 2011, 50, 9593-9597. (g)
Glorius, F. Dual Catalysis Sees the Light: Combining Photoredox
with Organo-, Acid, and Transition-Metal Catalysis. Chem. ‐Eur. J.
2014, 20, 3874-3886. (b) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Dual
Catalysis Strategies in Photochemical Synthesis. Chem. Rev. 2016,
116, 10035-10074. (c) Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.;
Evans, R. W.; MacMillan, D. W. C. The Merger of Transition Metal
and Photocatalysis. Nat. Rev. Chem. 2017, 1, 0052. (d) Matsui, J. K.;
Lang, S. B.; Heitz, D. R.; Molander, G. A. Photoredox-Mediated
Routes to Radicals: The Value of Catalytic Radical Generation in
Synthetic Methods Development. ACS Catal. 2017, 7, 2563-2575.
(e) Marzo, L.; Pagire, S. K.; Reiser, O.; König, B. Visible-Light
Photocatalysis: Does It Make a Difference in Organic Synthesis?
Angew. Chem., Int. Ed. 2018, 57, 10034–10072.
(9) For seminal reports about dual catalysis comprising a
photoredox catalyst and a transition metal catalyst, see: (a)
Kalyani,D.; McMurtrey, K. B.; Neufeldt, S. R.; Sanford, M. S. Room-
Temperature C–H Arylation: Merger of Pd-Catalyzed C–H
Functionalization and Visible-Light Photocatalysis. J. Am. Chem. Soc.
2011, 133, 18566-18569. (b) Ye, Y.; Sanford, M. S. Merging Visible-
Light Photocatalysis and Transition-Metal Catalysis in the Copper-
Catalyzed Trifluoromethylation of Boronic Acids with CF3I. J. Am.
Chem. Soc. 2012, 134, 9034-9037. (c) Sahoo, B.; Hopkinson, M. N.;
Glorius, F. Combining Gold and Photoredox Catalysis: Visible Light-
Mediated Oxy- and Aminoarylation of Alkenes. J. Am. Chem. Soc.
2013, 135, 5505-5508. (d) Shu, X.; Zhang, M.; He, Y.; Frei, H.; Toste,
F. D. Dual Visible Light Photoredox and Gold-Catalyzed Arylative
Ring Expansion. J. Am. Chem. Soc. 2014, 136, 5844-5847. (e) Tellis,
J. C.; Primer, D. N.; Molander, G. A. Single-Electron Transmetalation
in Organoboron Cross-Coupling by Photoredox/ Nickel Dual
Catalysis. Science 2014, 345, 433-436. (f) Zuo,Z.; Ahneman, D. T.;
Chu, L.; Terrett, J. A.; Doyle, A. G.; MacMillan, D. W. C. Merging
Photoredox with Nickel Catalysis: Coupling of α-Carboxyl sp3-
Carbons with Aryl Halides. Science 2014, 345, 437-440. (g) Ruhl, K.
E.; Rovis, T. Visible Light-Gated Cobalt Catalysis for a Spatially and
Temporally Resolved [2+2+2] Cycloaddition. J. Am. Chem. Soc.
2016, 138, 15527−15530.
(10) For representative examples of photoredox-catalyzed HAT
from -C–H bonds of aliphatic alcohols, see: (a) Jin, J.; MacMillan, D.
W. C. Alcohols as Alkylating Agents in Heteroarene C-H
Functionalization. Nature 2015, 525, 87−90. (b) Jeffrey, J. L.;
Terrett, J. A.; MacMillan, D. W. C. O-H Hydrogen Bonding Promotes
H-Atom Transfer from α C-H Bonds for C-Alkylation of Alcohols.
Science 2015, 349, 1532-1536. (c) Twilton, J.; Christensen, M.;
DiRocco, D. A.; Ruck, R. T.; Davies, I. W.; Macmillan, D. W. C.
Selective Hydrogen Atom Abstraction through Induced Bond
Polarization: Direct -Arylation of Alcohols through Photoredox,
HAT, and Nickel Catalysis. Angew. Chem., Int. Ed. 2018, 57, 5369-
5373. (d) Deng, H.-P.; Zhou, Q.; Wu, J. Microtubing-Reactor-
Assisted Aliphatic C−H Functionalization with HCl as a Hydrogen-
Atom-Transfer Catalyst Precursor in Conjunction with an Organic
Photoredox Catalyst. Angew. Chem., Int. Ed. 2018, 57, 12661-12665.
(e) Rohe, S.; Morris, A. O.; McCallum, T.; Barriault, L. Hydrogen
Atom Transfer Reactions via Photoredox Catalyzed Chlorine Atom
Generation. Angew. Chem., Int. Ed. 2018, 57, 15664–15669. (f)
Dimakos, V.; Su, H. Y.; Garrett, G. E.; Taylor, M. S. Site-Selective and
Stereoselective C−H Alkylations of Carbohydrates via Combined
Diarylborinic Acid and Photoredox Catalysis. J. Am. Chem. Soc.
2019, 141, 5149−5153. For a seminal report of the use of a thiyl
radical (not generated through photooxidation) in HAT from -C–
H bonds of aliphatic alcohols, see: (g) Huyser, E. S.; Kellogg, R. M.
Free-Radical Cleavage of β-Hydroxy Thio Ethers to Ketones and
Mercaptans. J. Org. Chem. 1966, 31, 10, 3366-3369.
Kawahara, R.; Fujita, K.; Yamaguchi, R. Dehydrogenative Oxidation
of Alcohols in Aqueous Media Using Water-Soluble and Reusable
Cp*Ir Catalysts Bearing a Functional Bipyridine Ligand. J. Am. Chem.
Soc. 2012, 134, 3643-3646. (h) Zhang, G.; Hanson, S. K. Cobalt-
Catalyzed Acceptorless Alcohol Dehydrogenation: Synthesis of
Imines from Alcohols and Amines. Org. Lett. 2013, 15, 650-653. (i)
Song, H.; Kang, B.; Hong, S. H. Fe-Catalyzed Acceptorless
Dehydrogenation of Secondary Benzylic Alcohols. ACS Catal. 2014,
4, 2889-2895. (j) Chakraborty, S.; Lagaditis, P. O.; Förster, M.;
Bielinski, E. A.; Hazari, N.; Holthausen, M. C.; Jones, W. D.; Schneider,
S. Well-Defined Iron Catalysts for the Acceptorless Reversible
Dehydrogenation-Hydrogenation of Alcohols and Ketones. ACS
Catal. 2014, 4, 3994-4003. (k) Fujita, K.; Tamura, R.; Tanaka, Y.;
Yoshida, M.; Onoda, M.; Yamaguchi, R. Dehydrogenative Oxidation
of Alcohols in Aqueous Media Catalyzed by a Water-Soluble
Dicationic Iridium Complex Bearing a Functional N-Heterocyclic
Carbene Ligand without Using Base. ACS Catal. 2017, 7, 7226-7230.
(3) (a) West, J. G.; Huang, D.; Sorensen, E. J. Acceptorless
Dehydrogenation of Small Molecules Through Cooperative Base
Metal Catalysis. Nat. Commun. 2015, 6, 10093. (b) Zhong, J.-J.; To,
W.-P.; Liu, Y.; Lua, W.; Che, C.-M. Efficient Acceptorless Photo-
Dehydrogenation of Alcohols and N-Heterocycles with Binuclear
Platinum (II) Diphosphite Complexes. Chem. Sci. 2019, 10, 4883-
4889.
(4) (a) Kasap, H.; Caputo, C. A.; Martindale, B. C. M.; Godin, R.;
Lau, V. W.; Lotsch, B. V.; Durrant, J. R.; Reisner, E. Solar-Driven
Reduction of Aqueous Protons Coupled to Selective Alcohol
Oxidation with a Carbon Nitride−Molecular Ni Catalyst System. J.
Am. Chem. Soc. 2016, 138, 9183-9192. (b) Chai, Z.; Zeng, T.-T.; Li,
Q.; Lu, L.-Q.; Xiao, W.-J.; Xu, D. Efficient Visible Light-Driven
Splitting of Alcohols into Hydrogen and Corresponding Carbonyl
Compounds over a Ni-Modified CdS Photocatalyst. J. Am. Chem. Soc.
2016, 138, 10128-10131. (c) Zhao, L.-M.; Meng, Q.-Y.; Fan, X.-B.; Ye,
C.; Li, X.-B.; Chen, B.; Ramamurthy, V.; Tung, C.-H.; Wu, L.-Z.
Photocatalysis with Quantum Dots and Visible Light: Selective and
Efficient Oxidation of Alcohols to Carbonyl Compounds through a
Radical Relay Process in Water. Angew. Chem., Int. Ed. 2017, 56,
3020-3024. (d) Yang, X.-J.; Zheng, Y.-W.; Zheng, L.-Q.; Wu, L.-Z.;
Tung, C.-H.; Chen, B. Visible Light-Catalytic Dehydrogenation of
Benzylic Alcohols to Carbonyl Compounds by Using an Eosin Y and
Nickel–Thiolate Complex Dual Catalyst System. Green Chem. 2019,
21, 1401-1405.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(5) (a) The bond dissociation energies (BDEs) of α-C–H in
aliphatic and benzylic alcohols are 91.7‒96.1 kcal/mol and 77.9‒
79 kcal/mol, respectively. For BDE of methanol, see: Blanksby, S. J.;
Ellison, G. B. Bond Dissociation Energies of Organic Molecules. Acc.
Chem. Res. 2003, 36, 255-263. (b) For BDE of several benzylic
alcohols and aliphatic alcohols, see SI of 4c.
(6) (a) Kato, S.; Saga, Y.; Kojima, M.; Fuse, H.; Matsunaga, S.;
Fukatsu, A.; Kondo, M.; Masaoka, S.; Kanai, M. Hybrid Catalysis
Enabling Room-Temperature Hydrogen Gas Release from N-
Heterocycles and Tetrahydronaphthalenes. J. Am. Chem. Soc. 2017,
139, 2204-2207. (b) Fuse, H.; Kojima, M.; Mitsunuma, H.; Kanai, M.
Acceptorless Dehydrogenation of Hydrocarbons by Noble-Metal-
Free Hybrid Catalyst System. Org. Lett. 2018, 20, 2042-2045.
(7) For CAD of nitrogen atom-containing organic molecules by
hybrid catalysis, see: (a) He, K.-H.; Tan, F.-F.; Zhou, C.-Z.; Zhou, G.-
J.; Yang, X.-L.; Li, Y. Acceptorless Dehydrogenation of N-
Heterocycles by Merging Visible-Light Photoredox Catalysis and
Cobalt Catalysis. Angew. Chem. Int. Ed. 2017, 56, 3080-3084. (b)
Sahoo, M. K. Saravanakumar, K. Jaiswal, G. Balaraman, E.
Photocatalysis Enabling Acceptorless Dehydrogenation of Diaryl
Hydrazines at Room Temperature. ACS Catal. 2018, 8, 7727-7733.
For a review: (c) Yin, Q.; Oestreich, M. Photocatalysis Enabling
Acceptorless Dehydrogenation of Benzofused Saturated Rings at
Room Temperature. Angew. Chem., Int. Ed. 2017, 56, 7716-7718.
(8) For recent selected reviews of photoredox catalysis in
organic synthesis, see: (a) Hopkinson, M. N.; Sahoo, B.; Li, J.-L.;
(11) Cuthbertson, J. D.; MacMillan, D. W. C. The Direct Arylation
of Allylic sp3 C–H Bonds via Organic and Photoredox Catalysis.
Nature 2015, 519, 74−77.
(12) (a) Laarhoven, L. J. J.; Mulder, P. α-C−H Bond Strengths in
Tetralin and THF: Application of Competition Experiments in
Photoacoustic Calorimetry. J. Phys. Chem. B 1997, 101, 73-77. (b)
Tian, Z.; Fattahi, A.; Lis, L.; Kass, S. R. Cycloalkane and Cycloalkene
ACS Paragon Plus Environment