Full Paper
[9] K. Faber, H. Stúckler, T. Kappe, J. Heterocycl. Chem. 1984, 21, 1177.
[10] J. Weirich, H. Antoni, J. Cardiovasc. Pharmacol. 1990, 15, 998.
[11] I. Jacquemond-Collet, F. Benoit-Vical, Mustofa, A. Valentin, E. Stanislas, M.
Mallié, I. Fourasté, Planta Med. 2002, 68, 68.
[12] O. B. Wallace, K. S. Lauwers, S. A. Jones, J. A. Dodge, Bioorg. Med. Chem.
Lett. 2003, 13, 1907.
[13] G. Dorey, B. Lockhart, P. Lestage, P. Casara, Bioorg. Med. Chem. Lett. 2000,
10, 935.
[14] W. M. Meier, D. H. Olson, C. Baerlocher, Zeolites 1996, 17, 1.
[15] M. Ramesh, P. S. Mohan, P. Shanmugam, Tetrahedron 1984, 40, 4041.
[16] F. G. Cirujano, A. Leyva-Pérez, A. Corma, F. X. Llabrés i Xamena, Chem-
CatChem 2013, 5, 538.
80 °C for 12 h without stirring, followed by another 24 h at 100 °C.
The resulting materials were recovered by filtration and washed
thoroughly with fresh DMF. Then the solids were washed three
times by soaking them in dichloromethane for 3 h. Finally, the solid
was recovered by filtration and dried under vacuum at room tem-
perature. X-ray diffraction (Phillips X′Pert, Cu-Kα radiation) was used
to confirm the expected structure type and high crystallinity of the
materials.
Catalytic Studies: In a typical catalytic reaction, aniline (93 mg,
1 mmol), benzaldehyde (127 mg, 1.2 mmol), and 3,4-dihydro-2H-
pyran (168 mg, 2 mmol) in acetonitrile (0.5 mL) were added at room
temperature to the MOF (3.6 mol-% Zr with respect to aniline) in a
3 mL batch reactor with a magnetic stirrer. The progress of the
reaction was monitored by GC (Varian 3900 with 30 m × 0.25 mm
BS5-SGE column) and GC–MS (Agilent 6890 with 30 m × 0.25 mm
HP-5 column and Agilent mass selective detector 5973) using do-
decane as internal standard. After each cycle, the solid catalysts
were recovered by centrifugation and Soxhlet-washed overnight
with acetonitrile and dried at 60 °C before reuse. The crystallinity
of the recovered material was determined by XRD and compared
with that of the fresh material. The diastereoisomeric excesses of
the products were determined by 1H NMR spectroscopy (Variant
Unity 300 Plus Gemini at 300 MHz, in CDCl3) from the integrated
intensities of the peaks at δ = 3.65 ppm (td, J = 11.5, 2.5 Hz, 1 H)
for the trans isomer and at δ = 3.36 (td, J = 11.3, 2.9 Hz, 1 H) and
5.33 ppm (d, J = 5.6 Hz, 1 H) for the cis isomer in the 1H NMR
spectra of the crude reaction mixtures.
[17] L. S. Povarov, Russ. Chem. Rev. 1967, 36, 656.
[18] L. Nagarapu, R. Bantu, R. G. Puligoundla, Eur. J. Chem. 2011, 2, 260.
[19] D. Mahajan, B. A. Ganai, R. L. Sharma, K. K. Kapoor, Tetrahedron Lett.
2006, 47, 7919.
[20] M. Abdollahi-Alibeik, M. Pouriayevali, React. Kinet. Mech. Catal. 2011, 104,
235.
[21] V. T. Kamble, B. S. Davane, S. A. Chavan, D. B. Muley, S. T. Atkore, Chin.
Chem. Lett. 2010, 21, 265.
[22] Y. Yu, J. Zhou, Z. Yao, F. Xu, Q. Shen, Heteroat. Chem. 2010, 21, 351.
[23] A. T. Khan, D. K. Das, M. M. Khan, Tetrahedron Lett. 2011, 52, 4539.
[24] K. S. Jeong, Y. B. Go, S. M. Shin, S. J. Lee, J. Kim, O. M. Yaghi, N. Jeong,
Chem. Sci. 2011, 2, 877.
[25] F. Vermoortele, R. Ameloot, L. Alaerts, R. Matthessen, B. Carlier, E. V. Ra-
mos Fernandez, J. Gascon, F. Kapteijn, D. E. de Vos, J. Mater. Chem. 2012,
22, 10313.
[26] B. Gole, A. K. Bar, A. Mallick, R. Banerjee, P. S. Mukherjee, Chem. Commun.
2013, 49, 7439.
[27] A. Grigoropoulos, G. F. S. Whitehead, N. Perret, A. P. Katsoulidis, F. M.
Chadwick, R. P. Davies, A. Haynes, L. Brammer, A. S. Weller, J. Xiao, M. J.
Rosseinsky, Chem. Sci. 2016, 7, 2037.
[28] Y. Liu, K. Mo, Y. Cui, Inorg. Chem. 2013, 52, 10286.
[29] D. Feng, Z. Y. Gu, Y. P. Chen, J. Park, Z. Wei, Y. Sun, M. Bosch, S. Yuan,
H. C. Zhou, J. Am. Chem. Soc. 2014, 136, 17714.
[30] J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga,
K. P. Lillerud, J. Am. Chem. Soc. 2008, 130, 13850.
[31] L. Valenzano, B. Civalleri, S. Chavan, S. Bordiga, M. H. Nilsen, S. Jakobsen,
K. P. Lillerud, C. Lamberti, Chem. Mater. 2011, 23, 1700.
[32] F. G. Cirujano, A. Corma, F. X. Llabrés i Xamena, Catal. Today 2015, 257,
213.
[33] F. G. Cirujano, A. Corma, F. X. Llabrés i Xamena, Chem. Eng. Sci. 2015,
124, 52.
[34] F. Vermoortele, B. Bueken, G. Le Bars, B. Van de Voorde, M. Vandichel, K.
Houthoofd, A. Vimont, M. Daturi, M. Waroquier, V. Van Speybroeck, D. E.
de Vos, J. Am. Chem. Soc. 2013, 135, 11465.
[35] F. Vermoortele, M. Vandichel, B. Van de Voorde, R. Ameloot, M. War-
oquier, V. Van Speybroeck, D. E. de Vos, Angew. Chem. Int. Ed. 2012, 51,
4887; Angew. Chem. 2012, 124, 4971.
[36] B. H. S. T. da Silva, L. M. Martins, L. C. da Silva, Synlett 2012, 23, 1973.
[37] Z. Zhou, F. Xu, X. Han, J. Zhou, Q. Shen, Eur. J. Org. Chem. 2007, 5265.
[38] G. Babu, P. T. Perumal, Tetrahedron Lett. 1998, 39, 3225.
[39] J. S. Yadav, B. V. S. Reddy, C. R. Madhuri, G. Sabitha, Synthesis 2001, 1065.
[40] A. Semwal, S. K. Nayak, Synth. Commun. 2006, 36, 227.
[41] L. R. Domingo, M. J. Aurell, J. A. Sáez, S. M. Mekelleche, RSC Adv. 2014,
4, 25268.
Acknowledgments
Financial support from the Generalitat Valenciana (projects Con-
solider-Ingenio MULTICAT and AICO/2015/065), the Spanish
Ministry of Economy and Competitiveness (MINECO) (program
Severo Ochoa SEV20120267), and the Spanish Ministry of Sci-
ence and Innovation (MICINN) (project MAT2014-52085-C2-1-P)
is gratefully acknowledged. V. L. R. thanks the Fundación “La
Caixa” for a “La Caixa-Severo Ochoa” Ph. D. Scholarship. This
project received funding from the European Union's Horizon
2020 Tesearch and Innovation Programme under the Marie
Skolodowska Curie grant agreement number 641887.
Keywords: Metal-organic frameworks · Heterogeneous
catalysis · Zirconium · Diastereoselectivity · Cycloaddition ·
Nitrogen heterocycles
[1] B. Li, H. Wang, B. Chen, Chem. Asian J. 2014, 9, 1474.
[2] J.-R. Li, J. Sculley, H. Zhou, Chem. Rev. 2012, 112, 869.
[3] T. Rodenas, I. Luz, G. Prieto, B. Seoane, H. Miro, A. Corma, F. Kapteijn, F. X.
Llabrés i Xamena, J. Gascon, Nature Mater. 2015, 14, 48.
[4] A. Corma, H. Garcia, F. X. Llabrés i Xamena, Chem. Rev. 2010, 110, 4606.
[5] D. Farrusseng, S. Aguado, C. Pinel, Angew. Chem. Int. Ed. 2009, 48, 7502;
Angew. Chem. 2009, 121, 7638.
[6] F. X. Llabrés i Xamena, J. Gascon (Eds.), Metal Organic Frameworks as
Heterogeneous Catalysts, The Royal Society of Chemistry, Cambridge, UK,
2013.
[42] V. Lucchini, M. Prato, G. Scorrano, M. Stivanello, G. Valle, J. Chem. Soc.
Perkin Trans. 2 1992, 259.
[43] X. Xu, S. M. Rummelt, F. L. Morel, M. Ranocchiari, J. A. Van Bokhoven,
Chem. Eur. J. 2014, 20, 15467.
[44] P. M. Schoenecker, C. G. Carson, H. Jasuja, C. J. J. Flemming, K. S. Walton,
Ind. Eng. Chem. Res. 2012, 51, 6513.
[45] M. Kandiah, M. H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye, M. Tilset, C.
Larabi, E. A. Quadrelli, F. Bonino, K. P. Lillerud, Chem. Mater. 2010, 22,
6632.
[7] J. Gascon, A. Corma, F. Kapteijn, F. X. Llabrés i Xamena, ACS Catal. 2014,
4, 361.
[8] N. Yamada, S. Kadowaki, K. Takahashi, K. Umezu, Biochem. Pharmacol.
1992, 44, 1211.
Received: March 31, 2016
Published Online: ■
Eur. J. Inorg. Chem. 0000, 0–0
5
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim