Please d oC hn eo mt Ca do mj u ms t margins
Page 4 of 5
COMMUNICATION
Journal Name
and no strongly irregular-shaped Ni(0) particles were formed are evident of the initial amine-dehydDrOoI:g1e0n.1a0t3io9/nC9sCtCe0p09a1n8Cd
(Figures S7, S8) although quite compact Ni(0) particles were support the direct alkane dehydrogenation from the partially
present. Relatively large and irregular shaped Ni(0) appeared oxidized N-heterocycles.
only after or during the dehydrogenation process (Figure 5(d),
Figures S3-S6). Since no significant loss in activity has been
observed, we suggest that these Ni(0) particles are catalytically
Conflicts of interest
active for the (de)hydrogenation of N-heterocycles.
There are no conflicts to declare.
2
0 mol% Cat. A
(1)
N
R
200 °C, 24h
N
R
Notes and references
R = Me (2e)
R = Ac (2f)
1
2
3
4
C. Gunanathan, D. Milstein, Science, 2013, 341, 1229712.
Q.-L. Zhu, Q. Xu, Energy Environ. Sci., 2015, 8, 478-512.
R. H. Crabtree, Energy Environ. Sci., 2008, 1, 134-138.
2
0 mol% Cat. A
or
(2)
N
200 °C, 24h
X
(a) E. Clot, O. Eisenstein, R. H. Crabtree, Chem. Commun., 2007, 0,
2g
2h
X = CH or N
2
231-2233; (b) A. Moores, M. Poyatos, Y. Luo, R. H. Crabtree, New J.
Chem., 2006, 30, 1675-1678.
M. Wiesenfeldt, Z. Nairoukh, T. Dalton, F. Glorius, Angew. Chem., Int.
Ed., 2019, doi:10.1002/anie.201814471
2
0 mol% Cat. A
5
6
(3)
200 °C, 24h
2i
77%
(a) R. Yamaguchi, C. Ikeda, Y. Takahashi, K.-i. Fujita, J. Am. Chem. Soc.,
2
009, 131, 8410-8412; (b) M. G. Manas, L. S. Sharninghausen, E. Lin,
R. H. Crabtree, J. Organomet. Chem., 2015, 792, 184-189; (c) Á.
Vivancos, M. Beller, M. Albrecht, ACS Catalysis, 2017, 8, 17-21; (d) S.
Chakraborty, W. W. Brennessel, W. D. Jones, J. Am. Chem. Soc., 2014,
Path A
1st
2nd
1
36, 8564-8567; (e) R. Xu, S. Chakraborty, H. Yuan, W. D. Jones, ACS
dehydrogenation
dehydrogenation
Catalysis, 2015, 5, 6350-6354.
N
N
N
7
(a) S. K. Moromi, S. M. A. H. Siddiki, K. Kon, T. Toyao, K.-i. Shimizu,
Catal. Today, 2017, 281, 507-511; (b) C. Deraedt, R. Ye, W. T. Ralston,
F. D. Toste, G. A. Somorjai, J. Am. Chem. Soc., 2017, 139, 18084-
H
1a
3a
2
a
N
1
8092; (c) J.-w. Zhang, D.-d. Li, G.-p. Lu, T. Deng, C. Cai,
H
3a'
Path B
ChemCatChem, 2018, 10, 4966; (d) K. Kaneda, Y. Mikami, T.
Mitsudome, T. Mizugaki, K. Jitsukawa, Heterocycles, 2010, 82, 1371;
Scheme 3. Control experiments and proposed reaction mechanism.
To get insights into the mechanism of nickel-catalysed
dehydrogenation of heterocycles, control experiments with
selected substrates have been performed (Scheme 3). Two
substrates bearing a protected nitrogen atom 2e and 2f do not
react in the dehydrogenation (eq 1). These results clearly show
the important role of a free N-H group in the dehydrogenation
process. Moreover, isomeric 5,6,7,8-tetrahydroquinoline 2g
with no saturated C-N bonds failed to produce 1b. As
expected, a carbon analogue tetraline 2h does not react under
(
e) Y. Han, Z. Wang, R. Xu, W. Zhang, W. Chen, L. Zheng, J. Zhang, J.
Luo, K. Wu, Y. Zhu, C. Chen, Q. Peng, Q. Liu, P. Hu, D. Wang, Y. Li,
Angew. Chem., Int. Ed., 2018, 57, 11262-11266.
(a) Z. Dai, Q. Luo, H. Jiang, Q. Luo, H. Li, J. Zhang, T. Peng, Catal. Sci.
Technol., 2017, 7, 2506-2511; (b) G. Liang, L. He, H. Cheng, W. Li, X. Li,
C. Zhang, Y. Yu, F. Zhao, J. Catalysis, 2014, 309, 468-476.
(a) M. O. Talbot, T. N. Pham, M. A. Guino-o, I. A. Guzei, A. I. Vinokur,
V. G. Young, Polyhedron, 2016, 114, 415-421; (b) P. M. Zimmerman, A.
Paul, Z. Zhang, C. B. Musgrave, Angew. Chem., Int. Ed., 2009, 48,
8
9
2
201-2205.
O. S. Al-Ayed, D. Kunzru, J. Chem. Technol. Biotechnol., 1988, 43, 23-
8.
1
1
0
1
3
optimized
reaction
conditions.
However,
1,2-
on
(a) S. Parua, S. Das, R. Sikari, S. Sinha, N. D. Paul, J. Org. Chem., 2017,
82, 7165-7175; (b) S. Parua, R. Sikari, S. Sinha, S. Das, G. Chakraborty,
N. D. Paul, Org. Biomol. Chem., 2018, 16, 274-284; (c) S. Parua, R.
Sikari, S. Sinha, G. Chakraborty, R. Mondal, N. D. Paul, J. Org. Chem.,
dihydronapthalene 2i yield 77% of naphthalene. Based
the results above, we propose, that the dehydrogenation
sequence starts with the release of one equivalent of H , from
2
2
018, 83, 11154–11166.
the C-N bond, giving intermediate 3a. Further
dehydrogenation can proceed in two different scenarios: via
1
2
P. Ryabchuk, G. Agostini, M.-M. Pohl, H. Lund, A. Agapova, H. Junge,
K. Junge, M. Beller, Sci.Adv., 2018, 4, eaat0761.
direct alkane dehydrogenation (Path A) or via tautomerization 13 Gas evolution curve for Cat. A was obtained from a set of 5 identical
experiments, which were reported in Ref. 11.
to 3a’ and subsequent dehydrogenation from the secondary
1
4
Fe: (a) Jagadeesh, R. V.; Surkus, A.-E.; Junge, H.; Pohl, M.-M.; Radnik,
J..; Rabeah, J.; Huan, H.; Schünemann, V.; Brückner, A.; Beller, M.
Science, 2013, 342, 1073–1076. (b) Ryabchuk, P.; Junge, K.; Beller, M.
Synthesis, 2018, 50, 4369-4376. (c) Cui, X.; Li, Y.; Bachmann, S.;
Scalone, M.; Surkus, A. E.; Junge, K.; Topf, C.; Beller, M. J. Am. Chem.
Soc., 2015, 137, 10652−10658.
Co: (a) Westerhaus, F. A.; Jagadeesh, R. V.; Wienhöfer, G.; Pohl, M.-
M.; Radnik, J..; Surkus, A.-E.; Rabeah, J.; Junge, K.; Junge, H.; Nielsen,
M.; Brückner, A.; Beller, M. Nat. Chem., 2013, 5, 537–543. (b) Chen,
F.; Kreyenschulte, C.; Radnik, J.; Lund, H.; Surkus, A.-E.; Junge, K.;
Beller, M. ACS Catal., 2017, 7, 1526–1532. (c) Chen, F.; Topf, C.;
Radnik, J.; Kreyenschulte, C.; Lund, H.;Schneider, M.; Surkus, A.-E.; He,
L.; Junge, K.; Beller, M. J. Am. Chem. Soc., 2016, 138, 8781−8788.
amine fragment as postulated by Jones (Path B). Based on the
activity of 2i, which is structurally relevant to 3a, direct
dehydrogenation of 3a to 1a via Path A is possible. We believe
that the liberation of the second equivalent of H
2
occurs via
both reaction pathways.
1
5
In summary, we demonstrated the first heterogeneous
nickel nanostructured catalyst (Cat. A) capable of promoting
hydrogenation and dehydrogenation of N-heterocycles. This
robust, reusable, and highly efficient material allows for
hydrogen storage in quinoline derivatives. The hydrogen
uptake/release was demonstrated for three consecutive cycles
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins