Organic Letters
Letter
and the polyketide portion can play a crucial role in the KR
stereoselectivity. It suggests that studies of KR domains from
late PKS modules should, in general, be carried out with
substrate surrogates that mimic at least the most characteristic
structural features of the polyketide portion to ensure the
significance of the results for subsequent experiments on the
level of whole PKS modules or multimodular assembly lines.
In summary, we present an iterative, highly step-economic
strategy for the synthesis of biomimetic β-keto polyenethioest-
ers. The key to this strategy was the application of the rHWE
for both the polyene assembly and the introduction of polar
SNAC and pantetheine β-keto thioate fragments, respectively.
The utility of such compounds in enzymatic in vitro studies
was demonstrated by an assay of the KR domain MycKRB
with 7b, which reproduced the natural stereoselectivity in
contrast with a previous experiment with SNAC-diketides.
This underpins the general importance of substrate mimics
that resemble the specific structural features of a biosynthetic
precursor to obtain significant results for PKS chemical biology
from KR in vitro studies. Our work is the first reported study of
an isolated KR domain using a complex pentaketidic substrate
surrogate.
Marie Curie program of the European Union (project number
293430) is gratefully acknowledged. We thank the MS facility
of the Faculty BCG, University of Bayreuth and the
“Nordbayerische NMR-Zentrum”.
REFERENCES
■
(
2
1) Petermichl, M.; Loscher, S.; Schobert, R. Angew. Chem., Int. Ed.
016, 55 (34), 10122−10125.
2) Hong, H.; Demangel, C.; Pidot, S. J.; Leadlay, P. F.; Stinear, T.
Nat. Prod. Rep. 2008, 25 (3), 447−454.
3) Mesa-Arango, A. C.; Scorzoni, L.; Zaragoza, O. Front. Microbiol.
012, 3, No. 286.
4) Ge, H.-M.; Huang, T.; Rudolf, J. D.; Lohman, J. R.; Huang, S.-X.;
(
(
2
(
Guo, X.; Shen, B. Org. Lett. 2014, 16 (15), 3958−3961.
(5) Julien, B.; Tian, Z.-Q.; Reid, R.; Reeves, C. D. Chem. Biol. 2006,
13 (12), 1277−1286.
(6) Antosch, J.; Schaefers, F.; Gulder, T. A. M. Angew. Chem., Int. Ed.
2014, 53 (11), 3011−3014.
(7) Zhang, J.; Van Lanen, S. G.; Ju, J.; Liu, W.; Dorrestein, P. C.; Li,
W.; Kelleher, N. L.; Shen, B. Proc. Natl. Acad. Sci. U. S. A. 2008, 105
5), 1460−1465.
8) Roberts, D. M.; Bartel, C.; Scott, A.; Ivison, D.; Simpson, T. J.;
Cox, R. J. Chem. Sci. 2017, 8 (2), 1116−1126.
9) Olson, A. S.; Chen, H.; Du, L.; Dussault, P. H. RSC Adv. 2015, 5
(
(
(
ASSOCIATED CONTENT
sı Supporting Information
■
(15), 11644−11648.
(10) Gay, D.; You, Y.-O.; Keatinge-Clay, A.; Cane, D. E. Biochemistry
*
2
(
013, 52 (49), 8916−8928.
11) Cacho, R. A.; Thuss, J.; Xu, W.; Sanichar, R.; Gao, Z.; Nguyen,
A.; Vederas, J. C.; Tang, Y. J. Am. Chem. Soc. 2015, 137 (50), 15688−
15691.
Materials, experimental procedures, configurational
analysis, and spectroscopic data (PDF)
(12) Sahner, J. H.; Sucipto, H.; Wenzel, S. C.; Groh, M.; Hartmann,
R. W.; Mu
13) Sucipto, H.; Sahner, J. H.; Prusov, E.; Wenzel, S. C.; Hartmann,
R. W.; Koehnke, J.; Mu
̈
ller, R. ChemBioChem 2015, 16 (6), 946−953.
(
■
̈
ller, R. Chem. Sci. 2015, 6 (8), 5076−5085.
(14) Tsunematsu, Y.; Fukutomi, M.; Saruwatari, T.; Noguchi, H.;
Hotta, K.; Tang, Y.; Watanabe, K. Angew. Chem., Int. Ed. 2014, 53
Frank Hahn − Fakultat
̈
Biologie, Chemie und Geologie,
(
32), 8475−8479.
15) He, H.-Y.; Pan, H.-X.; Wu, L.-F.; Zhang, B.-B.; Chai, H.-B.; Liu,
W.; Tang, G.-L. Chem. Biol. 2012, 19 (10), 1313−1323.
16) Dakarapu, U. S.; Bokka, A.; Asgari, P.; Trog, G.; Hua, Y.;
Nguyen, H. H.; Rahman, N.; Jeon, J. Org. Lett. 2015, 17 (23), 5792−
795.
17) Chae, M. J.; Jeon, A. R.; Livinghouse, T.; An, D. K. Chem.
(
(
Johannes Wunderlich − Fakultat
5447 Bayreuth, Germany
Theresa Roß − Fakultat Biologie, Chemie und Geologie,
Bayreuth, Germany
Marius Schroder − Fakultat
5
(
̈
Biologie, Chemie und
Bayreuth,
̈
Commun. 2011, 47 (11), 3281−3283.
9
(18) Gregory, A. W.; Chambers, A.; Hawkins, A.; Jakubec, P.; Dixon,
D. J. Chem. - Eur. J. 2015, 21 (1), 111−114.
̈
̈
Bayreuth, 95447
(19) Xie, L.-G.; Rogers, J.; Anastasiou, I.; Leitch, J. A.; Dixon, D. J.
Org. Lett. 2019, 21 (17), 6663−6667.
(20) Nakajima, M.; Sato, T.; Chida, N. Org. Lett. 2015, 17 (7),
̈
̈
Biologie, Chemie und Geologie,
1
(
696−1699.
̈
Department of Chemistry, Universitat Bayreuth, 95447
Bayreuth, Germany
21) Motoyama, Y.; Aoki, M.; Takaoka, N.; Aoto, R.; Nagashima, H.
Chem. Commun. 2009, No. 12, 1574−1576.
(22) Science of Synthesis: Houben-Weyl Methods of Molecular
Transformations, 5th ed.; Thieme: New York, 2000.
(
23) Weissman, K. J. Beilstein J. Org. Chem. 2017, 13, 348−371.
(24) Hackh, M.; Muller, M.; Ludeke, S. Chem. - Eur. J. 2013, 19
27), 8922−8928.
25) Piasecki, S. K.; Taylor, C. A.; Detelich, J. F.; Liu, J.; Zheng, J.;
Komsoukaniants, A.; Siegel, D. R.; Keatinge-Clay, A. T. Chem. Biol.
Author Contributions
̈
̈
̈
(
J.W., T.R., and M.S. conducted experiments. The manuscript
was written by J.W. and F.H. All authors have given approval
to the final version of the manuscript.
(
2
011, 18 (10), 1331−1340.
Notes
(26) Bali, S.; O’Hare, H. M.; Weissman, K. J. ChemBioChem 2006, 7
(
3), 478−484.
The authors declare no competing financial interest.
(
27) Bali, S.; Weissman, K. J. ChemBioChem 2006, 7 (12), 1935−
1
942.
ACKNOWLEDGMENTS
■
(28) Zhang, Z.; Cepeda, A. J.; Robles, M. L.; Hirsch, M.; Kumru, K.;
Zhou, J. A.; Keatinge-Clay, A. T. Chem. Commun. 2020, 56 (1), 157−
160.
Funding from the Emmy Noether program of the DFG (HA
5841/2-1), a Sachbeihilfe of the DFG (HA 5841/4-1), and the
D
Org. Lett. XXXX, XXX, XXX−XXX