Paper
Dalton Transactions
centrations of tBuNC were irradiated in the NMR spectrometer
6 L. Salem and C. Rowland, Angew. Chem., Int. Ed. Engl.,
1972, 11, 92–111.
(optical power output approx. 200 mW). When a dynamic
steady-state between photoconversion (2a → 3a) and thermal
reverse reaction (3a → 2a) was reached, the laser diode was
turned off and the thermal equilibration (Fig. S5†) was traced
by in situ P NMR spectroscopy. The concentrations of all
species were inferred from the time-resolved NMR spectra.
Using a non-linear fitting procedure, the differential rate
7 Diradicals, ed. W. T. Borden, Wiley-Interscience, New York,
1982.
8 E. Miliordos, K. Ruedenberg and S. S. Xantheas, Angew.
Chem., Int. Ed., 2013, 52, 5736–5739.
9 G. Gryn’ova, M. L. Coote and C. Corminboeuf, Wiley
Interdiscip. Rev.: Comput. Mol. Sci., 2015, 5, 440–459.
3
1
equations were fitted to the experimental data, yielding the 10 T. Stuyver, B. Chen, T. Zeng, P. Geerlings, F. De Proft and
rate constants as fitting parameters. For more details, please
refer to the ESI, p. S20ff.†
R. Hoffmann, Chem. Rev., 2019, 119, 11291–11351.
11 A. Hinz, R. Kuzora, U. Rosenthal, A. Schulz and
A. Villinger, Chem. – Eur. J., 2014, 20, 14659–14673.
Computational methods
12 A. Hinz, R. Kuzora, A.-K. Rölke, A. Schulz, A. Villinger and
4
6
Computations were carried out using ORCA 4.2.1
and
R. Wustrack, Eur. J. Inorg. Chem., 2016, 2016, 3611–3619.
5
0
Gaussian 09. Structure optimizations were performed using 13 J. Bresien, A. Hinz, A. Schulz and A. Villinger, Dalton
5
1,52
the PBE exchange–correlation functional
in conjunction
Trans., 2018, 47, 4433–4436.
and Ahlrichs’s 14 J. Bresien, A. Hinz, A. Schulz and A. Villinger, Eur. J. Inorg.
def2 basis set family. Accurate electronic energies for opti- Chem., 2018, 2018, 1679–1682.
mized structures were computed by single-point DLPNO-CCSD 15 J.-J. Wang, Z.-J. Zhou, H.-M. He, D. Wu, Y. Li, Z.-R. Li and
5
3,54
with Grimme’s dispersion correction D3(BJ)
5
5
5
6–59
55
(
T)
def2-TZVP/C correlation fitting basis.
Transition states were located on the PES using the Nudged
calculations employing the def2-TZVP basis set and
H.-X. Zhang, J. Phys. Chem. C, 2016, 120, 13656–13666.
16 K. Okuno, Y. Shigeta, R. Kishi and M. Nakano, J. Phys.
Chem. Lett., 2013, 4, 2418–2422.
6
0
4
1–45
Elastic Band (NEB) algorithm
implemented in ORCA at 17 H. Li, A. C. Fahrenbach, A. Coskun, Z. Zhu, G. Barin,
the PBE-D3/def2-TZVP level of theory. All transition state (TS)
structures were verified to be connected to the corresponding
Y.-L. Zhao, Y. Y. Botros, J.-P. Sauvage and J. F. Stoddart,
Angew. Chem., Int. Ed., 2011, 50, 6782–6788.
18 A. T. Buck, J. T. Paletta, S. A. Khindurangala, C. L. Beck and
A. H. Winter, J. Am. Chem. Soc., 2013, 135, 10594–
10597.
4
7,48
minima using Intrinsic Reaction Coordinate (IRC)
scans.
For further details (including optimized structures, elec-
tronic and thermal energies, NMR data) please refer to the ESI,
p. S29ff.†
19 J. Sun, Y. Wu, Y. Wang, Z. Liu, C. Cheng, K. J. Hartlieb,
M. R. Wasielewski and J. F. Stoddart, J. Am. Chem. Soc.,
2
015, 137, 13484–13487.
20 A. Hinz, A. Schulz and A. Villinger, Angew. Chem., Int. Ed.,
015, 54, 2776–2779.
1 A. Hinz, A. Schulz and A. Villinger, J. Am. Chem. Soc., 2015,
37, 9953–9962.
2 P. Ravat, T. Šolomek, D. Häussinger, O. Blacque and
M. Juríček, J. Am. Chem. Soc., 2018, 140, 10839–10847.
3 J. Bresien, T. Kröger-Badge, S. Lochbrunner, D. Michalik,
H. Müller, A. Schulz and E. Zander, Chem. Sci., 2019, 10,
Conflicts of interest
2
There are no conflicts to declare.
2
2
2
1
Acknowledgements
We thank the University of Rostock for access to the high-per-
formance computing facilities, and especially Malte Willert for
his assistance with the queueing system and software installa-
tions. Special thanks are due to Peter Kumm and Thomas
Kröger-Badge for their continuous commitment in our insti-
tute’s technical and electrical workshops. Furthermore, we
wish to thank the DFG (SCHU/1170/12-2) for financial support.
3486–3493.
2
2
4 K. Yamaguchi, Chem. Phys. Lett., 1975, 33, 330–335.
5 V. Bachler, G. Olbrich, F. Neese and K. Wieghardt, Inorg.
Chem., 2002, 41, 4179–4193.
2
2
2
6 D. Herebian, K. E. Wieghardt and F. Neese, J. Am. Chem.
Soc., 2003, 125, 10997–11005.
7 M.-M. Russew and S. Hecht, Adv. Mater., 2010, 22, 3348–
3360.
Notes and references
8 J. L. Zhang, J. Q. Zhong, J. D. Lin, W. P. Hu, K. Wu,
G. Q. Xu, A. T. S. Wee and W. Chen, Chem. Soc. Rev., 2015,
44, 2998–3022.
1
H. Grützmacher and F. Breher, Angew. Chem., Int. Ed., 2002,
1, 4006–4011.
4
2
3
F. Breher, Coord. Chem. Rev., 2007, 251, 1007–1043.
M. Abe, J. Ye and M. Mishima, Chem. Soc. Rev., 2012, 41,
29 D. Bléger and S. Hecht, Angew. Chem., Int. Ed., 2015, 54,
11338–11349.
3
808–3820.
30 P. C. Knipe, S. Thompson and A. D. Hamilton, Chem. Sci.,
2015, 6, 1630–1639.
4
5
M. Abe, Chem. Rev., 2013, 113, 7011–7088.
S. González-Gallardo and F. Breher, in Comprehensive 31 E. Niecke, A. Fuchs and M. Nieger, Angew. Chem., Int. Ed.,
Inorganic Chemistry II, Elsevier, 2013, vol. 1, pp. 413–455. 1999, 38, 3028–3031.
Dalton Trans.
This journal is © The Royal Society of Chemistry 2020