6
of 7
BOROUJENI ET AL.
complexes and metallorganic compounds on supports for
heterogeneous catalysis investigations.
ACKNOWLEDGEMENTS
SCHEME 2 Plausible reaction mechanism
We gratefully acknowledge financial support from the
Catalyst Center of Excellence (CCE) of Shahid Beheshti
University and the Iran National Elites Foundation (INEF).
REFERENCES
[
[
1] H.‐C. Zhou, J. R. Long, O. M. Yaghi, Chem. Rev. 2012, 112, 673.
2] L. W. Zhang, S. H. Wu, Y. Liu, F. F. Wang, X. Han, H. Y. Shang, Appl.
Organometal. Chem. 2016, 30, 684.
[
3] a) P.‐Z. Li, X.‐J. Wang, J. Liu, J. S. Lim, R. Zou, Y. Zhao, J. Am. Chem. Soc.
2016, 138, 2142; b) J. Liu, X. B. Zhang, J. Yang, L. Wang, Appl.
Organometal. Chem. 2014, 28, 198.
[
4] F. Zhang, Y. Jin, J. Shi, Y. Zhong, W. Zhu, M. S. El‐Shall, Chem. Eng. J.
2015, 269, 236.
[
[
5] F. Wu, L.‐G. Qiu, F. Ke, X. Jiang, Inorg. Chem. Commun. 2013, 32, 5.
6] F. Zhang, Y. Jin, Y. Fu, Y. Zhong, W. Zhu, A. A. Ibrahim, M. S. El‐Shall,
J. Mater. Chem. A 2015, 3, 17008.
FIGURE 6 Recycling of CuPc@MIL‐101 for oxidative amidation of
benzaldehyde with benzylamine salt
[
[
7] J. Hermannsdoerfer, R. Kempe, Chem. – Eur. J. 2011, 17, 8071.
8] Y.‐Z. Chen, Y.‐X. Zhou, H. Wang, J. Lu, T. Uchida, Q. Xu, S.‐H. Yu, H.‐L.
Jiang, ACS Catal. 2015, 5, 2062.
[39]
Based on previous reports,
a plausible mechanism is
[
9] X. Gu, Z.‐H. Lu, H.‐L. Jiang, T. Akita, Q. Xu, J. Am. Chem. Soc. 2011, 133,
proposed, as shown in Scheme 2. Because of the potential
for oxidation of free amines in the presence of TBHP, using
amine salts is necessary. Slow formation of amines using
11822.
[
10] J. Han, D. Wang, Y. Du, S. Xi, Z. Chen, S. Yin, T. Zhou, R. Xu, Appl. Catal.
A 2016, 521, 83.
amine salts and CaCO as the base minimizes amine oxida-
[11] A. B. Sorokin, Chem. Rev. 2013, 113, 8152.
3
tion under the reaction conditions. The reaction of amine
and benzaldehyde produces a hemiaminal intermediate which
is oxidized to amide in the presence of CuPc@MIL‐101.
The stability of CuPc@MIL‐101 towards the leaching
Cu(ΙΙ) ion was also examined. After removal of
CuPc@MIL‐101 by filtration, no detectable CuPc or Cu(ΙΙ)
ions in the reaction solution was observed. The recyclability
of CuPc@MIL‐101 was surveyed for oxidative amidation
under the optimized conditions. After completion of the reac-
tion, CuPc@MIL‐101 was filtered, was washed and dried at
[
12] A. Rezaeifard, M. Jafarpour, A. Naeimi, R. Haddad, Green Chem. 2012, 14,
3386.
[13] P. Chauhan, N. Yan, RSC Adv. 2015, 5, 37517.
[14] Y. Tanamura, T. Uchida, N. Teramae, M. Kikuchi, K. Kusaba, Y. Onodera,
Nano Lett. 2001, 1, 387.
[
15] E. Kockrick, T. Lescouet, E. V. Kudrik, A. B. Sorokin, D. Farrusseng, Chem.
Commun. 2011, 47, 1562.
[
16] B. Li, Y. Zhang, D. Ma, T. Ma, Z. Shi, S. Ma, J. Am. Chem. Soc. 2014, 136,
1202.
[17] V. R. Pattabiraman, J. W. Bode, Nature 2011, 480, 471.
[18] C. L. Allen, J. M. J. Williams, Chem. Soc. Rev. 2011, 40, 3405.
[19] R. M. Lanigan, P. Starkov, T. D. Sheppard, J. Org. Chem. 2013, 78, 4512.
[20] S. H. Cho, E. J. Yoo, I. Bae, S. Chang, J. Am. Chem. Soc. 2005, 127, 16046.
[21] J. Gao, G.‐W. Wang, J. Org. Chem. 2008, 73, 2955.
[
[
150 °C and was used in the next run. It was found that
CuPc@MIL‐101 could be reused for five cycles without a
significant decrease in its catalytic activity (Figure 6).
22] X. Xie, H. V. Huynh, ACS Catal. 2015, 5, 4143.
23] S. C. Ghosh, J. S. Y. Ngiam, A. M. Seayad, D. T. Tuan, C. L. L. Chai, A.
4
| CONCLUSIONS
Chen, J. Org. Chem. 2012, 77, 8007.
[
24] Z. Wu, K. L. Hull, Chem. Sci. 2016, 7, 969.
In summary, we developed a novel strategy for encapsulation
of MPc into the cavities of MIL‐101. This method demon-
strates unique advantages such as using ionic liquid, simple
synthetic method, utilizing commercially available raw mate-
rials, elimination of the use of organic solvents and short reac-
tion time compared to approaches for preparation of MPcs on
supports. CuPc@MIL‐101 was efficiently employed as a new
heterogeneous catalyst for oxidative amidation. The reaction
was carried out at room temperature with good to excellent
yields. Ongoing work in our laboratory includes using this
novel strategy for simple preparation of organometallic
[
25] a) B. Kang, Z. Fu, S. H. Hong, J. Am. Chem. Soc. 2013, 135, 11704; b) A. J.
A. Watson, A. C. Maxwell, J. M. J. Williams, Org. Lett. 2009, 11, 2667.
[26] C. Chen, S. H. Hong, Org. Biomol. Chem. 2011, 9, 20.
[27] J.‐F. Soulé, H. Miyamura, S. Kobayashi, J. Am. Chem. Soc. 2011, 133,
18550.
[
28] T. Hamada, X. Ye, S. S. Stahl, J. Am. Chem. Soc. 2008, 130, 833.
[29] a) A. Shaabani, M. Borjian Boroujeni, M. S. Laeini, Appl. Organometal.
Chem. 2016, 30, 154; b) A. Shaabani, M. Borjian Boroujeni, M. S. Laeini,
RSC Adv. 2016, 6, 27706; c) M. Mahyari, M. S. Laeini, A. Shaabani, Chem.
Commun. 2014, 50, 7855.
[
30] L. Bromberg, Y. Diao, H. Wu, S. A. Speakman, T. A. Hatton, Chem. Mater.
2012, 24, 1664.