Benzothiadiazole-Bridged Dyes for Dye-Sensitized Solar Cells
[8] D. W. Chang, H. J. Lee, J. H. Kim, S. Y. Park, S.-M. Park, L.
Dai, J.-B. Baek, Org. Lett. 2011, 13, 3880–3883.
[9] a) Y. Cui, Y. Wu, X. Lu, X. Zhang, G. Zhou, F. B. Miapeh, W.
Zhu, Z.-S. Wang, Chem. Mater. 2011, 23, 4394–4401; b) B.-S.
Chen, Y.-J. Chen, P.-T. Chou, Chem. Commun. 2011, 47, 4902–
4904; c) J. Y. Mao, F. L. Guo, W. J. Ying, W. J. Wu, J. Li, J. L.
Hua, Chem. Asian J. 2012, 7, 982–991.
[10] S. Qu, W. Wu, J. Hua, C. Kong, Y. Long, H. Tian, J. Phys.
Chem. C 2010, 114, 1343–1349.
[11] W. J. Ying, F. L. Guo, J. Li, Q. Zhang, W. J. Wu, H. Tian, J. L.
Hua, ACS Appl. Mater. Interfaces 2012, 4, 4215–4224.
[12] L.-Y. Lin, C.-H. Tsai, K.-T. Wong, T.-W. Huang, C.-C. Wu, S.-
H. Chou, F. Lin, S.-H. Chen, A.-I. Tsai, J. Mater. Chem. 2011,
21, 5950–5958.
= 3.6 Hz, 1 H), 7.38 (q, J = 7.2 Hz, 4 H), 7.21 (d, J = 7.2 Hz, 4
H), 7.15 (q, J = 7.2 Hz, 2 H), 6.69 (d, J = 4 Hz, 1 H), 4.04–3.98
(m, J = 7.2 Hz, 2 H), 1.75–1.68 (m, 4 H), 1.36–1.22 (m, 20 H),
0.87–0.81 (m, 6 H) ppm. 13C NMR (100 MHz, THF): δ = 175.7,
175.1, 163.8, 160.1, 159.6, 156.0, 153.7, 152.4, 150.7, 148.7, 148.0,
146.5, 132.4, 132.2, 132.1, 131.1, 130.4, 130.0, 129.7, 125.1, 124.0,
120.1, 114.3, 114.1, 67.5, 31.2, 29.0, 28.7, 28.6, 25.5, 22.1,
13.9 ppm. HRMS (ESI): calcd. for C48H52N4O5S 797.3737; found
797.3738. C48H52N4O5S (797.02): calcd. C 72.33, H 6.58, N 7.03;
found C 72.25, H 6.67, N 7.11.
(Z)-2-Cyano-3-(5-{7-[4-(diphenylamino)phenyl]-5,6-bis(octyloxy)-
benzo[c][1,2,5]thiadiazol-4-yl}thiophen-2-yl)acrylic Acid (DOBT-
III): A mixture of compound 10 (90 mg, 0.12 mmol) and cyano-
acetic acid (102 mg, 1.20 mmol) in acetic acid (14 mL) was heated
at reflux in the presence of ammonium acetate (120 mg,1.56 mmol)
for 12 h under argon. After cooling the solution, water was added
to quench the reaction. The resulting precipitate was filtered and
washed with water. The residue was purified by column chromatog-
raphy (silica gel, dichloromethane/EtOH, 15:1) to yield the product
[13]
[14]
[15]
[16]
[17]
[18]
H.-H. Chou, C.-Y. Hsu, Y.-C. Hsu, Y.-S. Lin, J. T. Lin, C. Tsai,
Tetrahedron 2012, 68, 767–773.
S. Paek, H. Choi, C. Kim, N. Cho, S. So, K. Song, M. K.
Nazeeruddin, J. Ko, Chem. Commun. 2011, 47, 2874–2876.
Y.-S. Yen, H.-H. Chou, Y.-C. Chen, C.-Y. Hsu, J. T. Lin, J.
Mater. Chem. 2012, 22, 8734–8747.
M. Velusamy, K. R. J. Thomas, J. T. Lin, Y.-C. Hsu, K.-C. Ho,
Org. Lett. 2005, 7, 1899–1902.
1
as a red solid (71.5 mg, 72.0%). H NMR (400 MHz, THF): δ =
J.-J. Kim, H. Choi, J.-W. Lee, M.-S. Kang, K. Song, S. O. Kang,
J. Ko, J. Mater. Chem. 2008, 18, 5223–5229.
10.75 (s, 1 H), 8.60 (s, 1 H), 8.46 (s, 1 H), 7.60 (s, 1 H), 7.40 (s, 2
H), 7.16–7.11 (m, 4 H), 7.00 (d, J = 7.6 Hz, 4 H), 6.93–6.90 (m, 4
H), 4.07 (s, 2 H), 3.66 (s, 2 H), 1.98 (s, 2 H), 1.27–1.14 (m, 22 H),
0.74–0.72 (m, 6 H) ppm. 13C NMR (100 MHz, THF): δ = 152.7,
152.6, 150.1, 147.6, 137.7, 131.9, 129.2, 126.9, 124.6, 123.1, 121.9,
116.2, 74.2, 74.1, 31.9, 30.1, 30.0, 29.7, 29.5, 29.4, 29.3, 26.1, 26.0,
22.6, 13.6, 13.5 ppm. HRMS (ESI): calcd. for C48H52N4O4S2
811.3352; found 811.3351. C48H52N4O4S2 (813.08): calcd. C 70.90,
H 6.45, N 6.89; found C 70.76, H 6.44, N 6.93.
a) W. Zhu, Y. Wu, S. Wang, W. Li, X. Li, J. Chen, Z.-S. Wang,
H. Tian, Adv. Funct. Mater. 2011, 21, 756–763; b) Y. Wu, M.
Marszalek, S. M. Zakeeruddinn, Q. Zhang, H. Tian, M.
Grätzel, W. Zhu, Energy Environ. Sci. 2012, 5, 8261–8272; c)
Y. Wu, X. Zhang, W. Li, Z.-S. Wang, H. Tian, W. Zhu, Adv.
Energy Mater. 2012, 2, 149–156.
[19]
N. Koumura, Z. S. Wang, M. Miyashita, Y. Uemura, H. Sekig-
uchi, Y. Cui, A. Mori, S. Mori, K. Hara, J. Mater. Chem. 2009,
19, 4829–4834.
[20]
[21]
[22]
[23]
P. Ding, Y.-P. Zou, C.-S. Hsu, Macromol. Chem. Phys. 2010,
Supporting Information (see footnote on the first page of this arti-
cle): 1H and 13C NMR spectra of the newly synthesized com-
pounds, HRMS, and elemental analysis data of the target com-
pounds.
211, 2555–2561.
J. L. Sessler, W. B. Callaway, S. P. Dudek, R. W. Date, D. W.
Bruce, Inorg. Chem. 2004, 43, 6650–6653.
A. R. Far, A. Shivanyuk, J. Rebek, J. Am. Chem. Soc. 2002,
124, 2854–2855.
a) M. Pastore, E. Mosconi, F. D. Angelis, J. Phys. Chem. C
2012, 116, 5965–5973; b) M. Planells, L. Pellejà, J. N. Clifford,
M. Pastore, F. D. Angelis, N. López, S. R. Marder, E. Palo-
mares, Energy Environ. Sci. 2011, 4, 1820–1829; c) J. Lim, Y. S.
Kwon, T. Park, Chem. Commun. 2011, 47, 4147–4149; d) X.-F.
Wang, O. Kitao, H. Zhou, H. Tamiaki, S.-i. Sasaki, J. Phys.
Chem. C 2009, 113, 7954–7961; e) Z.-S. Wang, N. Koumura,
Y. Cui, M. Takahashi, H. Sekiguchi, A. Mori, T. Kubo, A.
Furube, K. Hara, Chem. Mater. 2008, 20, 3993–4003.
R.-Z. Li, D. Shi, D.-F. Zhou, Y.-M. Cheng, G.-L. Zhang, P.
Wang, J. Phys. Chem. C 2009, 113, 7469–7479.
Acknowledgments
This work was supported by the National Natural Science Founda-
tion of China (NSFC) (grant numbers 2116110444, 21172073 and
91233207), the National Basic Research 973 Program (grant
2013CB733700), the Fundamental Research Funds for the Central
Universities (grants WJ0913001 and WJ1114050), and the Ph. D.
Program Foundation of the Ministry of Education of China (grant
20090074110004).
[24]
[25]
[26]
P. Leriche, P. Frère, A. Cravino, O. Aléveque, J. Roncali, J. Org.
Chem. 2007, 72, 8332–8336.
[1] a) B. O’Regan, M. Grätzel, Nature 1991, 353, 737–740; b) A.
Hagfeldt, M. Grätzel, Acc. Chem. Res. 2000, 33, 269–277; c)
J.-H. Yum, P. Walter, S. Huber, D. Rentsch, T. Geiger, F.
Nuesch, F. D. Angelis, M. Grätzel, M. K. Nazeeruddin, J. Am.
Chem. Soc. 2007, 129, 10320–10321.
[2] M. Grätzel, Acc. Chem. Res. 2009, 42, 1788–1798.
[3] A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran,
M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M.
Zakeeruddin, M. Grätzel, Science 2011, 334, 629–634.
[4] A. Mishra, M. K. R. Fischer, P. Bäuerle, Angew. Chem. 2009,
121, 2510–2536; Angew. Chem. Int. Ed. 2009, 48, 2474–2499.
[5] B.-S. Chen, D.-Y. Chen, C.-L. Chen, C.-W. Hsu, H.-C. Hsu,
K.-L. Wu, S.-H. Liu, P.-T. Chou, Y. Chi, J. Mater. Chem. 2011,
21, 1937–1945.
a) S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P.
Liska, P. Comte, P. Péchy, M. Grätzel, Chem. Commun. 2008,
5194–5196; b) X. Jiang, T. Marinado, E. Gabrielsson, D. P.
Hagberg, L. Sun, A. Hagfeldt, J. Phys. Chem. C 2010, 114,
2799–2805; c) J. Shi, J. Huang, R. Tang, Z. Chai, J. Hua, J.
Qin, Q. Li, Z. Li, Eur. J. Org. Chem. 2012, 5248–5255; d) E.
Longhi, A. Bossi, G. D. Carlo, S. Maiorana, F. D. Angelis, P.
Salvatori, A. Petrozza, M. Binda, V. Roiati, P. R. Mussini, C.
Baldoli, E. Licandro, Eur. J. Org. Chem. DOI: 10.1002/
ejoc.201200958.
F.-S. Francisco, G.-B. Germà, M.-S. Iván, J. Bisquert, Phys.
Chem. Chem. Phys. 2011, 13, 9083–9118.
L.-C. Zou, C. Hunt, J. Electrochem. Soc. 2009, 156, C8–C15.
L.-Y. Lin, C.-H. Tsai, K.-T. Wong, T.-W. Huang, L. Hsieh, S.-
H. Liu, H.-W. Lin, C.-C. Wu, S.-H. Chou, S.-H. Chen, A. I.
Tsai, J. Org. Chem. 2010, 75, 4778–4785.
[27]
[28]
[29]
[6] L.-Y. Lin, C.-H. Tsai, K.-T. Wong, T.-W. Huang, L. Hsieh, S.-
H. Liu, H.-W. Lin, C.-C. Wu, S.-H. Chou, S.-H. Chen, A.-I.
Tsai, J. Org. Chem. 2010, 75, 4778–4785.
[7] J. He, W. Wu, J. Hua, Y. Jiang, S. Qu, J. Li, Y. Long, H. Tian,
J. Mater. Chem. 2011, 21, 6054–6062.
[30]
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B.
Eur. J. Org. Chem. 2013, 1770–1780
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
1779