R. Schettini, B. Nardone, F. De Riccardis, G. Della Sala, I. Izzo
SHORT COMMUNICATION
Andrews, J. Crosby, J. A. Peterson, Tetrahedron Lett. 2002, 43,
peptoid 14 as a sodium complex (as determined by
1H NMR spectroscopy) with no trace amount of other
stereoisomers. The sodium complex showed catalytic effi-
ciency that was similar to that of non-complexed 14 in the
benzylation of 7 to afford 8a in 60% yield with 65%ee after
20 h at 0 °C. Moreover, free cyclopeptoid 14 was easily ob-
tained from the complexed form after elution on a reverse-
phase HPLC column.[28]
8015–8018.
[6]
E. J. Corey, F. Xu, M. C. Noe, J. Am. Chem. Soc. 1997, 119,
12414–12415.
[7]
For selected examples, see: a) S.-s. Jew, B.-S. Jeong, M.-S. Yoo,
H. Huh, H.-g. Park, Chem. Commun. 2001, 1244–1245; b) J.-H.
Lee, M.-S. Yoo, J.-H. Jung, S.-s. Jew, H.-g. Park, B.-S. Jeong,
Tetrahedron 2007, 63, 7906–7915; c) H.-g. Park, B.-S. Jeong,
M.-S. Yoo, M.-k. Park, H. Huh, S.-s. Jew, Tetrahedron Lett.
2001, 42, 4645–4648; d) H.-g. Park, B.-S. Jeong, J.-H. Lee, M.-
k. Park, Y.-J. Lee, M.-J. Kim, S.-s. Jew, Angew. Chem. Int. Ed.
2002, 41, 3036–3038; Angew. Chem. 2002, 114, 3162–3164; e)
M.-S. Yoo, B.-S. Jeong, J.-H. Lee, H.-g. Park, S.-s. Jew, Org.
Lett. 2005, 7, 1129–1131; f) S.-s. Jew, M.-S. Yoo, B.-S. Jeong,
I. Y. Park, H.-g. Park, Org. Lett. 2002, 4, 4245–4248; g) R.
Chinchilla, P. Mazón, C. Nájera, F. J. Ortega, Tetrahedron:
Asymmetry 2004, 15, 2603–2607; h) J. Lv, L. Zhang, L. Liu, Y.
Wang, Chem. Lett. 2007, 36, 1354–1355; i) W. He, Q. Wang,
Q. Wang, B. Zhang, X. Sun, S. Zhang, Synlett 2009, 1311–
1314.
a) T. Ooi, M. Kameda, K. Maruoka, J. Am. Chem. Soc. 1999,
121, 6519–6520; b) T. Ooi, Y. Uematsu, M. Kameda, K. Ma-
ruoka, Angew. Chem. Int. Ed. 2002, 41, 1551–1554; Angew.
Chem. 2002, 114, 1621–1624; c) M. Kitamura, S. Shirakawa, K.
Maruoka, Angew. Chem. Int. Ed. 2005, 44, 1549–1551; Angew.
Chem. 2005, 117, 1573–1575; d) T. Kano, Q. Lan, X. Wang, K.
Maruoka, Adv. Synth. Catal. 2007, 349, 556–560; e) S. Shirak-
awa, M. Ueda, Y. Tanaka, T. Hashimoto, K. Maruoka, Chem.
Asian J. 2007, 2, 1276–1281; f) M. Kitamura, Y. Arimura, S.
Shirakawa, K. Maruoka, Tetrahedron Lett. 2008, 49, 2026–
2030.
Conclusions
In conclusion, we reported the first example of the use
of chiral cyclopeptoids in asymmetric phase-transfer cataly-
sis and showed their potential in enantioselective catalysis.
The enantiomeric excess values shown in the alkylation re-
actions of glycine derivative were moderate, but the results
obtained are remarkable considering the very few examples
reported with metal-complexing catalysts. Moreover, these
macrocycles appear to be promising phase-transfer cata-
lysts, as their modular structure and the solid-phase syn-
thetic approach are especially suitable for constructing li-
braries of different compounds for combinatorial catalyst
screening, for instance, by varying the number, the position,
and the nature of each residue.[29] Studies devoted to im-
prove their performances and to clarify the mechanism of
the catalysis are currently in progress.
[8]
[9]
a) Y.-G. Wang, K. Maruoka, Org. Process Res. Dev. 2007, 11,
628–632; b) Y.-G. Wang, M. Ueda, X. Wang, Z. Ha, K. Ma-
ruoka, Tetrahedron 2007, 63, 6042–6050.
a) B. Lygo, B. Allbutt, S. R. James, Tetrahedron Lett. 2003, 44,
5629–5632; b) B. Lygo, B. Allbutt, D. J. Beaumont, U. Butt,
J. A. R. Gilks, Synlett 2009, 675–680; c) B. Lygo, U. Butt, M.
Cormack, Org. Biomol. Chem. 2012, 10, 4968–4976.
T. Kita, A. Georgieva, Y. Hashimoto, T. Nakata, K. Nagasawa,
Angew. Chem. Int. Ed. 2002, 41, 2832–2834; Angew. Chem.
2002, 114, 2956–2958.
Supporting Information (see footnote on the first page of this arti-
cle): All experimental procedures, characterization data, and copies
of the 1H NMR and 13C NMR spectra and the HPLC traces of the
main catalysts.
[10]
[11]
Acknowledgments
[12]
[13]
[14]
T. Shibuguchi, Y. Fukuta, Y. Akachi, A. Sekine, T. Ohshima,
M. Shibasaki, Tetrahedron Lett. 2002, 43, 9539–9543.
M. Waser, K. Gratzer, R. Herchl, N. Müller, Org. Biomol.
Chem. 2012, 10, 251–254.
The authors thank the University of Salerno (FARB), the Italian
Ministero dell’Università
e della Ricerca (MIUR) (PRIN
20109Z2XRJ_006), and the People Programme (Marie Curie Ac-
tions) of the European Union’s Seventh Framework Programme
FP7/2007-2013 under REA grant agreement number PIRSES-GA-
2012-319011 for financial support. Dr Patrizia Iannece is thanked
for ES-MS and Ms Assunta D’Amato for experimental work.
a) S. E. Denmark, N. D. Gould, L. M. Wolf, J. Org. Chem.
2011, 76, 4260–4336; b) T. Ishikawa, K. Nagata, S. Kani, M.
Matsuo, D. Sano, T. Kanemitsu, M. Miyazaki, T. Itoh, Hetero-
cycles 2011, 83, 2577–2588; c) K. Lippur, T. Kanger, K. Kriis,
T. Kailas, A.-M. Müürisepp, T. Pehkb, M. Loppa, Tetrahedron:
Asymmetry 2007, 18, 137–141; d) G. N. Grover, W. E. Kowton-
iuk, D. K. MacFarland, Tetrahedron Lett. 2006, 47, 57–60; e)
W. E. Kowtoniuk, D. K. MacFarland, G. N. Grover, Tetrahe-
dron Lett. 2005, 46, 5703–5705; f) N. Mase, T. Ohno, N. Hoshi-
kawa, K. Ohishi, H. Morimoto, H. Yoda, K. Takabe, Tetrahe-
dron Lett. 2003, 44, 4073–4075.
M. Halpern, Phase-Transfer Catalysis, in: Ullmann’s Encyclope-
dia of Industrial Chemistry, 2012, Wiley-VCH, Weinheim, Ger-
many, vol. 26, p. 496.
a) P. Bakó, K. Vizvárdi, Z. Bajora, L. Tõke, Chem. Commun.
1998, 1193–1194; b) P. Bakó, A. Makó, G. Keglevich, M. Kubi-
nyi, K. Pál, Tetrahedron: Asymmetry 2005, 16, 1861–1871; c)
A. Makó, Z. Rapi, G. Keglevich, Á. Szöllo˝sy, L. Drahos, L.
[1] a) M. Ma˛kosza, M. Fedoryn´ski, Curr. Catal. 2012, 1, 79–87; b)
M. Ma˛kosza, Pure Appl. Chem. 2000, 72, 1399–1403; c) C. M.
Starks, C. L. Liotta, M. Halpern, Phase-Transfer Catalysis,
Chapman & Hall, New York, 1994.
[2] For recent reviews on asymmetric phase-transfer catalysis, see:
a) S. Shirakawa, K. Maruoka, Angew. Chem. Int. Ed. 2013, 52,
4312–4348; Angew. Chem. 2013, 125, 4408–4445; b) T. Ooi, K.
Maruoka, Angew. Chem. Int. Ed. 2007, 46, 4222–4266; Angew.
Chem. 2007, 119, 4300–4345; c) S.-s. Jew, H.-g. Park, Chem.
Commun. 2009, 7090–7103.
[3] a) B. Lygo, B. I. Andrews, Acc. Chem. Res. 2004, 37, 518–525;
b) M. J. O’Donnell, Acc. Chem. Res. 2004, 37, 506–517; c) K.
Maruoka, T. Ooi, Chem. Rev. 2003, 103, 3013–3028; d) M. J.
O’Donnell, Aldrichim. Acta 2001, 34, 3–15.
[4] M. J. O’Donnell, W. D. Bennett, S. Wu, J. Am. Chem. Soc.
1989, 111, 2353–2355.
[15]
[16]
Hegedus, P. Bakó, Tetrahedron: Asymmetry 2010, 21, 919–925.
˝
[17]
[18]
[19]
E. F. J. de Vries, L. Ploeg, M. Colao, J. Brussee, A.
van der Gen, Tetrahedron: Asymmetry 1995, 6, 1123–1132.
K. Hori, M. Tamura, K. Tani, N. Nishiwaki, M. Ariga, Y.
Tohda, Tetrahedron Lett. 2006, 47, 3115–3118.
K. Yonezawa, M. L. Patil, H. Sasai, S. Takizawa, Heterocycles
2005, 66, 639–644.
[5] a) B. Lygo, P. G. Wainwright, Tetrahedron Lett. 1997, 38, 8595–
8598; b) B. Lygo, J. Crosby, T. R. Lowdon, J. A. Peterson, P. G.
Wainwright, Tetrahedron 2001, 57, 2403–2409; c) B. Lygo, B. J.
7796
www.eurjoc.org
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2014, 7793–7797