4952 Chem. Mater., Vol. 22, No. 17, 2010
Duncan et al.
lower % conversion, they reduced the formation of bypro-
ducts such as propane and n-butane. The oligomerization of
propene was also studied using an (NH4)2SiF6 trþeated zeolite
HZSM-5.16 The formation of unbranched C20 hydrocar-
bons was enhanced upon fluorination compared to that of
the nonfluorinated zeolite. Additionally, the formation of
unwanted branched oligomers was reduced. The fluorinated
materials were shown to have isolated acidic sites and
lowered surface acidity than that of the parent material,
and result in limited oligomer branching. Sulphated TiO2-
SiO2 mixed oxide species that could be used as a Brønsted
acid catalyst for cumene cracking and esterification reac-
tions showed increased reactivity upon fluorination.17
Fluorination was accomplished using a solution of NH4F
in dilute sulfuric acid resulting in materials with 0.5-2 wt %
F (0.3-1.1 mmol/g) and enhanced catalytic activity because
that of the corresponding nonfluorinated materials. β-Ami-
no alcohols have shown promise as biological/medicinal
agents or chiral auxiliaries,18 insecticides,19 and metal che-
lates in catalysis.20 To date, several methodologies have
been shown to catalytically form β-amino alcohols from
epoxides and aromatic/aliphatic amines. Metal halides,21
triflates,22 nitrates23 and perchlorates,24 sulfamic acid,25
hexafluoro-2-propanol (HFIP),26 1,4-diazabicyclic[2,2,2]-
octane (DABCO),27 ionic liquids,28 and even water29 have
all been shown capable of catalyzing the ring opening
reaction of epoxides by amines. Heterogeneous catalysts,
such as aluminosilicates,30 functionalized and non-
functionalized mesoporous silicas,31 polyoxometalates,32
silica and titanosilicate nanoparticles,33 amberlyst-15,34
(19) (a) Ferrarini, S. R.; Duarte, M. O.; da Rosa, R. G.; Rolim, V.;
ꢀ
of higher Brønsted acidity and favorable inductive interac-
Eifler-Lima, Gilsane von Poser, V. L.; Sarda Ribeiro, V. L. Vet.
2-
Parasitol. 2008, 157, 149–153. (b) Graebin, C. S.; Madeira, M;
Yokoyama-Yasunaka, J. K. U.; Miguel, D. C.; Uliana, S. R. B.;
tions with nearby SO4
.
Herein, we report on the synthesis of mesoporous SBA-
15 and MCM-41 type highly ordered mesoporous fluor-
osilicas (OMFs) and nanoporous and corrugated fluorosi-
lica nanospheres (CFNSs) using triethyloxonium tetrafluo-
roborate (Et3OBF4), a commonly used alkylating agent in
organic syntheses. Using facile synthetic protocols, OMFs
and CFNSs were prepared without the use of HF, toxic gas
mixtures, or specialized equipment necessary for electro-
chemical, PECVD or microwave induced procedures.
Although many of the other procedures mentioned use
either silica wafers or as-synthesized thin layers, this pro-
cedure is capable of producing OMF’s on a large scale. The
composition of synthesized OMF species were examined
via FTIR spectroscopy, X-ray photoelectron spectroscopy
(XPS), and elemental and thermogravimetric (TGA) ana-
lyses and found to contain 2.4-7.0 wt % F corresponding
to a loading of 1.3-3.7 mmol/g. The morphology of the
materials was investigated using nitrogen physisorption mea-
surements, small angle powder X-ray diffraction (XRD),
transmission electron microscopy (TEM), and solid state
29Si HP-MAS and CP-MAS NMR spectroscopy. This
synthetic method enables widening and restructuring of
the pore diameters of mesoporous silica without compro-
mising its ordered structure while at the same time per-
mitting fluorination of the material’s surface. Fluorinated
materials exhibit larger pore volumes and diameters with
only minor resultant pore constriction. To further study
the effects of our presented fluorination methodology, we
assessed the catalytic activity of OMF and sulfonic-acid-
functionalized mesoporous fluorosilica materials (OMF-
SO3H) in the ring opening of styrene oxide by aniline form-
ing the corresponding β-amino alcohol and compared it to
ꢀ
Benitez, D.; Cerecetto, H.; Mercedes Gonzalez, M.; Gomes da
Rosa, R.; Eifler-Lima, V. L. Eur. J. Med. Chem. 2010, 45, 1524–
1528.
(20) (a) Yan, W.; Mao, B.; Zhu, S.; Jiang, X.; Liu, Z.; Wang., R. Eur. J.
Org. Chem. 2009, 3790–3794. (b) Zhu, S.; Yan, W.; Mao, B.; Jiang, X.;
Wang, R. J. Org. Chem. 2009, 74, 6980–6985. (c) Mahadik, G. S.;
Knott, S. A.; Szczepura, L. F.; Peters, S. J.; Standard, J. M.;
Hitchcock, S. R. J. Org. Chem. 2009, 74, 8164–8173. (d) Dahlenburg,
L.; Treffert, H.; Farr, C.; Heinemann, F. W.; Zahl, A. Eur. J. Inorg.
Chem. 2007, 1738–1751. (e) Li, Y.; He, B.; Qin, B.; Feng, X.; Zhang, G.
J. Org. Chem. 2004, 69, 7910–7913. (f) Rasmussen, T.; Norrby, P.
J. Am. Chem. Soc. 2003, 125, 5130–5138.
(21) (a) Mojtahedi, M. M.; Abaee, M. S.; Hamidi, V. Catal. Commun.
2007, 8, 1671–1674. (b) Chakraborti, A. K.; Rudrawar, S.; Kondaskar,
A. Eur. J. Org. Chem. 2004, 3597–3600. (c) Sundararajan, G.;
Vijayakrishna, K.; Varghese, B. Tetrahedron Lett. 2004, 45, 8253–
ꢀ
8256. (d) Pachon, L. D.; Gamez, P.; van Brussel, J. J. M.; Reedijk, J.
Tetrahedron Lett. 2003, 44, 6025–6027. (e) Chakraborti, A. K.;
Kondaskar, A. Tetrahedron Lett. 2003, 44, 8315–8319.
(22) (a) Procopio, A.; Gaspari, M.; Nardi, M.; Oliverio, M.; Rosati, O.
Tet. Lett. 2008, 49, 2289–2293. (b) Placzek, A. T.; Donelson, J. L.;
Trivedi, R. Tetrahedron Lett. 2005, 46, 9029–9034. (c) Gibbs, R. A.;
De, S. K. Chem. Lett. 2004, 33, 304–305.
(23) Bhanushali, M. J.; Nandurkar, N. S.; Bhor, M. D.; Bhanage, B. M.
Tetrahedron Lett. 2008, 49, 3672–3676.
(24) Pujala, S. B.; Chakraborti., A. K. J. Org. Chem. 2007, 72, 3713–
3722.
(25) Kamal, A.; Rajendra Prasad, B.; Malla Reddy, A.; Naseer, M.;
Khan, A. Catal. Commun. 2007, 8, 1876–1880.
(26) Das, U.; Crousse, B.; Kesavan, V.; Bonnet-Delpon, D.; Begue, J. P.
J. Org. Chem. 2000, 65, 6749–6751.
(27) Wu, J.; Xia, H. G. Green Chem. 2005, 7, 708–710.
(28) Yadav, J. S.; Reddy, B. V. S.; Basak, A. K.; Narsaiah, A. V. Tet.
Lett. 2003, 44, 1047–1050.
(29) (a) Wang, Z.; Cui, Y. T.; Xu, Z. B.; Qu., J. J. Org. Chem. 2008, 73,
2270–2274. (b) Bonollo, S.; Fringuelli, F.; Pizzo, F.; Vaccaro, L.
Green Chem. 2006, 8, 960–964. (c) Azizi, N.; Saidi, M. R. Org. Lett.
2005, 7(17), 3649–3651.
(30) (a) Kureshy, R. I.; Agrawal, S.; Kumar, M.; Khan, N. H.; Abdi,
S. H. R.; Bajaj, H. C. Catal. Lett. 2010, 134, 318–323. (b) Chakravarti,
R.; Oveisi, H.; Kalita, P.; Pal, R. R.; Halligudi, S. B.; Kantam,
M. L.; Vinu, A. Microporous Mesoporous Mater. 2009, 123, 338–
344. (c) Robinson, M. W. C.; Timms, D. A.; Williams, S. M.;
Graham, A. E. Tetrahedron Lett. 2007, 48, 6249–6251. (d) Kureshy,
R. I.; Singh, S.; Khan, N. H.; Abdi, S. H. R.; Suresh, E.; Jasra, R. V.
J. Mol. Catal., A 2007, 264, 162–169. (e) Onaka, M.; Kawai, M.;
Izumi, Y. Chem. Lett. 1985, 779–782.
(31) (a) Bordoloi, A.; Hwang, Y. K.; Hwang, J. S.; Halligudi, S. B.
Catal. Commun. 2009, 10, 1398–1403. (b) Heravi, M. M.; Baghernejad,
B.; Oskooie, H. A. Catal. Lett. 2009, 130, 547–550. (c) Saikia, L.;
Satyarthi, J. K.; Srinivas, D.; Ratnasamy, P. J. Catal. 2007, 252,
148–160.
(32) Danafar, H.; Yadollahi, B. Catal. Commun. 2009, 10, 842–847.
(33) (a) Sreedhar, B.; Radhika, P.; Neelima, B.; Hebalkar, N. J. Mol.
Cat. A: Chem. 2007, 272, 159–163. (b) Satyarthi, J. K.; Saikia, L.;
Srinivas, D.; Ratnasamy, P. Appl. Catal., A 2007, 330, 145–151.
(34) Vijender, M.; Kishore, P.; Narender, P.; Satyanarayana, B. J. Mol.
Catal., A 2007, 266, 290–293.
(16) (a) Han, S.; Shihabi, D. S.; Chang., C. D. J. Catal. 2000, 196, 375–
378.
(17) Samantaray, S. K.; Parida, K. M. Appl. Catal., A 2001, 211, 175–
187.
ꢀ
ꢀ
ꢀ
(18) (a) Cordova, I.; Leon, L. G.; Leon, F.; San Andres, L.; Luis, J. G.;
ꢀ
Padron, J. M. Eur. J. Med. Chem. 2006, 41, 1327–1332. (b) Clarkson,
C.; Musonda, C. M.; Chibale, K.; Campbell, W. E.; Smith, P.
Bioorg. Med. Chem. 2003, 11, 4417–4422. (c) Danieli, E.; Trabocchi,
A.; Menchi, G.; Guarna, A. Eur. J. Org. Chem. 2005, 4372–4381.
(d) Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev. 1996, 96, 835–
875.