Page 9 of 11
ACS Catalysis
for Synthesis of Tetrahydroazepines: Phosphine-Dependent [3+3] and
Lalancette, R.; Szostak, R.; Szostak, M. The Most Twisted Acyclic
[4+3] Pathways. RSC Adv. 2019, 9, 1214−1221; (h) Feng, J.; Chen, Y.;
Qin, W.; Huang, Y. Phosphine-Catalyzed (3+2)/(3+2) Sequential
Annulation of gamma-Vinyl Allenoates: Access to Fused Carbocycles.
Org. Lett. 2020, 22, 433−437; (i) Li, K.; Goncalves, T. P.; Huang, K.
W.; Lu, Y. Dearomatization of 3-Nitroindoles by a Phosphine-
Catalyzed Enantioselective [3+2] Annulation Reaction. Angew. Chem.
Int. Ed. 2019, 58, 5427; (j) Wang, H.; Zhang, J.; Tu, Y.; Zhang, J.
Amides: Structures and Reactivity. Org. Lett. 2018, 20, 7771−7774.
1
2
3
4
5
6
7
8
11.
For reviews, see: (a) Bourne-Branchu, Y.; Gosmini, C.;
Danoun, G. N-Boc-Amides in Cross-Coupling Reactions. Chem. Eur.
J. 2019, 25, 2663−2674; (b) Shi, S.; Nolan, S. P.; Szostak, M. Well-
Defined Palladium(II)-NHC Precatalysts for Cross-Coupling
Reactions of Amides and Esters by Selective N−C/O−C Cleavage.
Acc. Chem. Res. 2018, 51, 2589−2599; (c) Dander, J. E.; Garg, N. K.
Breaking Amides using Nickel Catalysis. ACS Catal. 2017, 7,
1413−1423; (d) Liu, C.; Szostak, M. Twisted Amides: From
Obscurity to Broadly Useful Transition-Metal-Catalyzed Reactions by
N−C Amide Bond Activation. Chem. Eur. J. 2017, 23, 7157−7173; (e)
Gao, Y.; Ji, C.-L.; Hong, X. Ni-Mediated C−N Activation of Amides
and Derived Catalytic Transformations. Sci. China Chem. 2017, 60,
1413−1424.
Phosphine-Catalyzed
Enantioselective
Dearomative
[3+2]-
Cycloaddition of 3-Nitroindoles and 2-Nitrobenzofurans. Angew.
Chem. Int. Ed. 2019, 58, 5422−5426; (k) Meng, X.; Huang, Y.; Chen,
R. Bifunctional Phosphine-Catalyzed Domino Reaction: Highly
Stereoselective Synthesis of cis-2,3-Dihydrobenzofurans from Salicyl
N-Thiophosphinyl Imines and Allenes. Org. Lett. 2009, 11, 137−140;
(l) Takizawa, S.; Kishi, K.; Yoshida, Y.; Mader, S.; Arteaga, F.; Lee,
S.; Hoshino, M.; Rueping, M.; Fujita, M.; Sasai, H. Phosphine-
Catalyzed β,γ‐Umpolung Domino Reaction of Allenic Esters: Facile
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
12.
Selected examples: (a) Zhou, T.; Li, G.; Nolan, S. P.;
Szostak, M. [Pd(NHC)(acac)Cl]: Well-Defined, Air-Stable, and
Readily Available Precatalysts for Suzuki and Buchwald-Hartwig
Cross-coupling (Transamidation) of Amides and Esters by N−C/O−C
Activation. Org. Lett. 2019, 21, 3304−3309; (b) Liu, C.; Li, G.; Shi,
S.; Meng, G.; Lalancette, R.; Szostak, R.; Szostak, M. Acyl and
Decarbonylative Suzuki Coupling of N-Acetyl Amides: Electronic
Tuning of Twisted, Acyclic Amides in Catalytic Carbon–Nitrogen
Bond Cleavage. ACS Catal. 2018, 8, 9131−9139; (c) Boit, T. B.;
Weires, N. A.; Kim, J.; Garg, N. K. Nickel-Catalyzed Suzuki-Miyaura
Coupling of Aliphatic Amides. ACS Catal. 2018, 8, 1003−1008; (d)
Liu, X.; Hsiao, C. C.; Guo, L.; Rueping, M. Cross-Coupling of
Amides with Alkylboranes via Nickel-Catalyzed C−N Bond Cleavage.
Org. Lett. 2018, 20, 2976−2979; (e) Ji, C.-L.; Hong, X. Factors
Controlling the Reactivity and Chemoselectivity of Resonance
Destabilized Amides in Ni-Catalyzed Decarbonylative and
Nondecarbonylative Suzuki-Miyaura Coupling. J. Am. Chem. Soc.
2017, 139, 15522−15529; (f) Weires, N. A.; Baker, E. L.; Garg, N. K.
Nickel-Catalysed Suzuki–Miyaura Coupling of Amides. Nat. Chem.
2016, 8, 75−79; (g) Meng, G.; Szostak, M. Sterically Controlled Pd-
Catalyzed Chemoselective Ketone Synthesis via N−C Cleavage in
Twisted Amides. Org. Lett. 2015, 17, 4364−4367; (h) Li, X.; Zou, G.
Acylative Suzuki Coupling of Amides: Acyl-Nitrogen Activation via
Synergy of Independently Modifiable Activating Groups. Chem.
Commun. 2015, 51, 5089−5092; (i) Hie, L.; Fine Nathel, N. F.; Shah,
T. K.; Baker, E. L.; Hong, X.; Yang, Y.-F.; Liu, P.; Houk, K. N.; Garg,
N. K. Conversion of Amides to Esters by the Nickel-Catalysed
Activation of Amide C−N Bonds. Nature 2015, 524, 79−83. For our
work on the C−N Bond cleavage in the N-Boc anilines, see: (j) Zhang,
Z.-B.; Ji, C.-L.; Yang, C.; Chen, J.; Hong, X.; Xia, J.-B. Nickel-
Catalyzed Kumada Coupling of Boc-Activated Aromatic Amines via
Nondirected Selective Aryl C−N Bond Cleavage. Org. Lett. 2019, 21,
1226−1231.
Synthesis of Tetrahydrobenzofuranones Bearing
a
Chiral
Tetrasubstituted Stereogenic Carbon Center. Angew.Chem.Int. Ed.
2015, 54,15511−15515; (m) Huang, Z.; Bao, Y.; Zhang, Y.; Yang, F.;
Lu, T.; Zhou, Q., Hydroxy-Assisted Regio- and Stereoselective
Synthesis of Functionalized 4-Methylenepyrrolidine Derivatives via
Phosphine-Catalyzed [3+2] Cycloaddition of Allenoates with o-
Hydroxyaryl Azomethine Ylides. J. Org. Chem. 2017, 82,
12726−12734.
7.
Selected examples besides phosphine catalysis: (a) Zhao, G.-
L.; Shi, M. Aza-Baylis-Hillman Reactions of N-Tosylated Aldimines
with Activated Allenes and Alkynes in the Presence of Various Lewis
Base Promoters. J. Org. Chem. 2005, 70, 9975−9984; (b) Chen, Y.-Z.;
Zhu, J.; Wu, J.-J.; Wu, L. Organobase Catalyzed Straightforward
Synthesis of Phosphinyl Functionalized 2H-Pyran cores from
Allenylphosphine Oxides and 1,3-Diones. Org. Biomol. Chem. 2018,
16, 6675−6679; (c) Cheng, C.; Sun, X.; Wu, Z.; Liu, Q.; Xiong, L.;
Miao, Z. Lewis Base Catalyzed Regioselective Cyclization of Allene
Ketones or α-Methyl Allene Ketones with Unsaturated Pyrazolones.
Org. Biomol. Chem. 2019, 17, 3232−3238; (d) Fu, G. C. Asymmetric
Catalysis
(Dimethylamino)pyridine. Acc. Chem. Res. 2004, 37, 542−547.
8. (a) Liang, Y.; Liu, S.; Xia, Y.; Li, Y.; Yu, Z. -X.
with
"Planar-Chiral"
Derivatives
of
4-
Mechanism, Regioselectivity, and the Kinetics of Phosphine-
Catalyzed [3+2] Cycloaddition Reactions of Allenoates and Electron-
Deficient Alkenes. Chem. Eur. J. 2008, 14, 4361−4373; (b) Cui, C.-X.;
Shan, C.; Zhang, Y.-P.; Chen, X.-L.; Qu, L.-B.; Lan, Y. Mechanism
of Phosphine-Catalyzed Allene Coupling Reactions: Advances in
Theoretical Investigations Chem. Asian. J. 2018, 13, 1076−1088.
9.
Gasparyan, G. T.; Ovakimyan, M. Z.; Abramyan, T. A.;
Indzhikyan, M. G. Reaction of tributylphosphine with phenylallene.
Arm. Khim. Zh. 1984, 37, 520-522.
10.
(a) Wiberg, K. B.; Breneman, C. M. Resonance
13.
For C(O)−N cross-coupling with alkyne, see: (a) Li, B.-J.;
Interactions in Acyclic Systems. 3. Formamide Internal Rotation
Revisited. Charge and Energy Redistribution along the C-N Bond
Rotational Pathway. J. Am. Chem. Soc. 1992, 114, 831−840; (b)
Wiberg, K. B. The Interaction of Carbonyl Groups with Substituents.
Acc. Chem. Res. 1999, 32 , 922−929; (c) Glover, S. A.; Rosser, A. A.
Reliable Determination of Amidicity in Acyclic Amides and Lactams.
J. Org. Chem. 2012, 77, 5492−5502. For resonance energy of
C(O)−N bond in N-aryl amide, please see: (d) Szostak, R.; Shi, S.;
Meng, G.; Lalancette, R.; Szostak, M. Ground-State Distortion in N-
Acyl-tert-butyl-carbamates (Boc) and N-Acyl-tosylamides (Ts):
Twisted Amides of Relevance to Amide N-C Cross-Coupling. J. Org.
Chem. 2016, 81, 8091−8094; (e) Szostak, R.; Meng, G.; Szostak, M.
Wang, H.-Y.; Zhu, Q.-L.; Shi, Z.-J. Rhodium/Copper-Catalyzed
Annulation of Benzimides with Internal Alkynes: Indenone Synthesis
through Sequential C−H and C−N Cleavage. Angew. Chem. Int. Ed.
2012, 51, 3948−3952. For C(O)−N cross-coupling with of alkene, see:
(b) Medina, J. M.; Moreno, J.; Racine, S.; Du, S.; Garg, N. K.
Mizoroki–Heck Cyclizations of Amide Derivatives for the
Introduction of Quaternary Centers. Angew. Chem. Int. Ed. 2017, 56,
6567−6571; (c) Walker, J. A.; Vickerman, K. L.; Humke, J. N.;
Stanley, L. M. Ni-Catalyzed Alkene Carboacylation via Amide C−N
Bond Activation. J. Am. Chem. Soc. 2017, 139, 10228−10231.
14.
(a) Hoerter, J. M.; Otte, K. M.; Gellman, S. H.; Cui, Q.;
Stahl, S. S. Discovery and Mechanistic Study of Al(III)-Catalyzed
Transamidation of Tertiary Amides. J. Am. Chem. Soc. 2008, 130,
647−654; (b) Stephenson, N. A.; Zhu, J.; Gellman, S. H.; Stahl, S. S.
Catalytic Transamidation Reactions Compatible with Tertiary Amide
Metathesis under Ambient Conditions. J. Am. Chem. Soc. 2009, 131,
10003−10008; (c) Cheung, C. W.; Ma, J. A.; Hu, X. Manganese-
Mediated Reductive Transamidation of Tertiary Amides with
Nitroarenes. J. Am. Chem. Soc. 2018, 140, 6789−6792; (d) Li, G.;
Szostak, M. Highly Selective Transition-Metal-Free Transamidation
of Amides and Amidation of Esters at Room Temperature. Nat.
Resonance
Destabilization
in
N-Acylanilines
(Anilides):
Electronically-Activated Planar Amides of Relevance in N−C(O)
Cross-Coupling. J. Org. Chem. 2017, 82, 6373−6378; (f) Meng, G.;
Shi, S.; Lalancette, R.; Szostak, R.; Szostak, M. Reversible Twisting
of Primary Amides via Ground State N-C(O) Destabilization: Highly
Twisted Rotationally Inverted Acyclic Amides. J. Am. Chem. Soc.
2018, 140, 727−734; (g) Szostak, R.; Szostak, M. N-Acyl-
glutarimides: Resonance and Proton Affinities of Rotationally-
Inverted Twisted Amides Relevant to N–C(O) Cross-Coupling. Org.
Lett. 2018, 20,1342−1345; (h) Liu, C.; Shi, S.; Liu, Y.; Liu, R,;
ACS Paragon Plus Environment