Page 7 of 9
Journal of the American Chemical Society
(11) Kim, K. T.; Cornelissen, J. J. L. M.; Nolte, R. J. M.; van
CONCLUSIONS
1
2
3
4
5
6
7
8
Hest, J. C. M. J. Am. Chem. Soc. 2009, 131, 13908.
(12) Pal, A.; Bérubé, M.; Hall, D. G. Angew. Chem. Int. Ed.
2010, 49, 1492.
(13) Wu, X.; Li, Z.; Chen, X.ꢀX.; Fossey, J. S.; James, T. D.;
Jiang, Y.ꢀB. Chem. Soc. Rev. 2013, 42, 8032.
(14) Bull, S. D.; Davidson, M. G.; Van den Elsen, J. M. H.;
Fossey, J. S.; Jenkins, A. T. A.; Jiang, Y. B.; Kubo, Y.;
Marken, F.; Sakurai, K.; Zhao, J. Z.; James, T. D. Acc.
Chem. Res. 2013, 46, 312.
(15) Wulff, G.; Vesper, W. J. Chromatogr. 1978, 167, 171.
(16) Awino, J. K.; Gunasekara, R. W.; Zhao, Y. J. Am. Chem.
Soc. 2016, 138, 9759.
In summary, we have reported a facile and general
method to create proteinꢀsized waterꢀsoluble nanopartiꢀ
cle receptors for a wide range of monoꢀ and oligosacchaꢀ
rides. The in situ imprinting was enabled by the strong
interactions between FM 4 and the appropriate diol
functionalities on the sugar in the micellar environment.
The number of binding sites on these “synthetic lectins”
could be controlled easily. Importantly, the binding sites
on the sugar can be identified prior to imprinting (nameꢀ
ly, cisꢀ1,2ꢀdiol, cisꢀ3,4ꢀdiol, and transꢀ4,6ꢀdiol), making
the molecular recognition highly predictable. Among the
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(17) Wulff, G. Angew. Chem. Int. Ed. Engl. 1995, 34, 1812.
(18) Wulff, G. Chem. Rev. 2001, 102, 1.
eight Dꢀaldohexoses, glucose, mannose, and galactose are
the most biologically relevant and can be distinguished
completely. With the ability to differentiate oligosacchaꢀ
rides by their building blocks, chain length, and glycosidꢀ
ic linkages, we expect these “synthetic lectins” could beꢀ
come highly useful in biology and chemistry in the fuꢀ
ture.
(19) Haupt, K.; Mosbach, K. Chem. Rev. 2000, 100, 2495.
(20)Ye, L.; Mosbach, K. Chem. Mater. 2008, 20, 859.
(21) Shea, K. J. Trends Polym. Sci. 1994, 2, 166.
(22)Sellergren, B. Molecularly imprinted polymers: man-
made mimics of antibodies and their applications in
analytical chemistry; Elsevier: Amsterdam, 2001.
(23) Komiyama,
M.
Molecular
imprinting:
from
ASSOCIATED CONTENT
Supporting Information
fundamentals to applications; WileyꢀVCH: Weinheim,
2003.
(24)Zimmerman, S. C.; Lemcoff, N. G. Chem. Commun.
2004, 5.
(25) Yan, M.; Ramström, O. Molecularly imprinted
materials: science and technology; Marcel Dekker:
New York, 2005.
(26)Alexander, C.; Andersson, H. S.; Andersson, L. I.;
Ansell, R. J.; Kirsch, N.; Nicholls, I. A.; O'Mahony, J.;
Whitcombe, M. J. J. Mol. Recognit. 2006, 19, 106.
(27) Sellergren, B.; Hall, A. J. In Supramol Chem; John
Wiley & Sons, Ltd: 2012.
(28)Haupt, K.; Ayela, C. Molecular Imprinting; Springer:
Heidelberg ; New York, 2012.
(29)Awino, J. K.; Zhao, Y. J. Am. Chem. Soc. 2013, 135,
12552.
Experimental details, ITC titration curves, and additional
data. This material is available free of charge via the Interꢀ
AUTHOR INFORMATION
Corresponding Author
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
(30)Awino, J. K.; Zhao, Y. Chem.-Eur. J. 2015, 21, 655.
(31) Wulff, G.; Schauhoff, S. J. Org. Chem. 1991, 56, 395.
(32) Kim, H.; Kang, Y. J.; Kang, S.; Kim, K. T. J. Am. Chem.
Soc. 2012, 134, 4030.
We thank the National Institute of General Medical Sciences
of the National Institutes of Health (R01GM113883) for
financial support of the research.
(33) Dowlut, M.; Hall, D. G. J. Am. Chem. Soc. 2006, 128,
REFERENCES
4226.
(1) Kamerling, J. P.; Boons, G.ꢀJ. Comprehensive
glycoscience: from chemistry to systems biology; 1st
ed.; Elsevier: Amsterdam ; Boston, 2007.
(2) Wang, B.; Boons, G.ꢀJ. Carbohydrate recognition:
biological problems, methods, and applications; Wiley:
Hoboken, N.J., 2011.
(34) Bérubé, M.; Dowlut, M.; Hall, D. G. J. Org. Chem.
2008, 73, 6471.
(35) Jay, J. I.; Lai, B. E.; Myszka, D. G.; Mahalingam, A.;
Langheinrich, K.; Katz, D. F.; Kiser, P. F. Mol.
Pharmaceutics 2010, 7, 116.
(36) Schumacher, S.; Katterle, M.; Hettrich, C.; Paulke, B.
R.; Hall, D. G.; Scheller, F. W.; GajovicꢀEichelmann, N.
J. Mol. Recognit. 2011, 24, 953.
(37) Mahalingam, A.; Geonnotti, A. R.; Balzarini, J.; Kiser,
P. F. Mol. Pharmaceutics 2011, 8, 2465.
(38)Schumacher, S.; Grüneberger, F.; Katterle, M.;
Hettrich, C.; Hall, D. G.; Scheller, F. W.; Gajovicꢀ
Eichelmann, N. Polymer 2011, 52, 2485.
(39) Ellis, G. A.; Palte, M. J.; Raines, R. T. J. Am. Chem. Soc.
2012, 134, 3631.
(40)Kim, H.; Kang, Y. J.; Jeong, E. S.; Kang, S.; Kim, K. T.
ACS Macro Lett. 2012, 1, 1194.
(41) Kotsuchibashi, Y.; Agustin, R. V. C.; Lu, J.ꢀY.; Hall, D.
G.; Narain, R. ACS Macro Lett. 2013, 2, 260.
(42)Liu, C. T.; Tomsho, J. W.; Benkovic, S. J. Bioorg. Med.
Chem. 2014, 22, 4462.
(3) Jin, S.; Cheng, Y.; Reid, S.; Li, M.; Wang, B. Med. Res.
Rev. 2010, 30, 171.
(4) Davis, A. P.; James, T. D. Carbohydrate Receptors;
WileyꢀVCH Verlag GmbH & Co. KGaA, 2005.
(5) James, T. D.; Phillips, M. D.; Shinkai, S. Boronic acids
in saccharide recognition; RSC Publishing: Cambridge,
2006.
(6) Ferrand, Y.; Crump, M. P.; Davis, A. P. Science 2007,
318, 619.
(7) Barwell, N. P.; Crump, M. P.; Davis, A. P. Angew.
Chem. Int. Ed. 2009, 48, 7673.
(8) Ke, C.; Destecroix, H.; Crump, M. P.; Davis, A. P. Nat.
Chem. 2012, 4, 718.
(9) Rauschenberg, M.; Bomke, S.; Karst, U.; Ravoo, B. J.
Angew. Chem. Int. Ed. 2010, 49, 7340.
(10) Kobayashi, K.; Asakawa, Y.; Kato, Y.; Aoyama, Y. J. Am.
Chem. Soc. 1992, 114, 10307.
(43) Kotsuchibashi, Y.; Ebara, M.; Sato, T.; Wang, Y.;
Rajender, R.; Hall, D. G.; Narain, R.; Aoyagi, T. J. Phys.
Chem. B 2015, 119, 2323.
ACS Paragon Plus Environment