L. Cecchi et al. / Tetrahedron Letters 46 (2005) 7877–7879
7879
4. Shimizu, T.; Hayashi, Y.; Teramura, K. Bull. Chem. Soc.
Jpn. 1984, 57, 2531–2534.
5. Touaux, B.; Klein, B.; Texier-Boullet, F.; Hamelin, J. J.
Chem. Res. (S) 1994, 116–117.
6. Wade, P. A.; Amin, N. V.; Yen, H.-K.; Price, D. T.; Huhn,
G. F. J. Org. Chem. 1984, 49, 4595–4601.
7. Kwiathowski, S.; Langwald, M. Monatsh. Chem. 1986,
117, 1091–1093.
8. Shimizu, T.; Hayashi, Y.; Shibafuchi, H.; Teramura, K.
Bull. Chem. Soc. Jpn. 1986, 59, 2827–2831.
9. Kaji, E.; Harada, K.; Zen, S. Chem. Pharm. Bull. 1978, 26,
3254–3256.
10. Leslie-Smith, M. G.; Paton, R. M.; Webb, N. Tetrahedron
Lett. 1994, 35, 9251–9254.
11. Sugiyama, T. Appl. Organomet. Chem. 1995, 9, 399–
411.
12. Basel, Y.; Hassner, A. Synthesis 1997, 309–312.
13. Giacomelli, G.; De Luca, L.; Porcheddu, A. Tetrahedron
2003, 59, 5437–5440.
14. Ballini, R.; Bosica, G.; Fiorini, D. Tetrahedron 2003, 59,
1143–1145.
15. Lewis, E. S. In The Chemistry of Amino, Nitroso, and Nitro
Compounds, Suppl. F, Part 2; Patai, S., Ed.; Wiley: New
York, 1982; p 715.
16. The products exhibit data in agreement with those
reported for cycloadducts previously prepared via nitrile
oxides, thus exo adducts 6 are obtained from norbornene
and the 5-phenyl substituted regioisomers 7 from styrene.
17. Multistep synthesis. Yield calculated considering only the
cycloaddition step.
18. Caramella, P.; Bandiera, T.; Marinone Albini, F.; Gamba,
A.; Corsaro, A.; Perrini, G. Tetrahedron 1988, 44, 4917–
4925.
19. Arai, N.; Iwakoshi, M.; Tanabe, K.; Narasaka, K. Bull.
Chem. Soc. Jpn. 1999, 72, 2277–2286.
While cycloadditions of nitronic esters are widely de-
scribed in the literature,26 reports of nitronate or
nitronic acid cycloadditions are not common.27 In fact,
the cycloadducts produced in the presence of strong
acids usually derive from intermediate nitrile oxides.6
Recently an intramolecular 1,3-dipolar cycloaddition
of nitronic acids to unactivated double bonds has been
reported.28
Scheme 1 is based on the observations reported above: a
pre-equilibrium is slowly established between the nitro-
nate (possibly H-bonded to the ammonium ion) and
the dipolarophile, thus accounting for the induction per-
iod. Adduct 5 is assumed to be in equilibrium with its
tautomers and with the conjugated acid 50 (nitronic acid
cycloadduct). The dehydration, requiring heterolysis of
the hexocyclic N–O bond, can then be explained by
the interaction of one of the N-hydroxy species 5 or 50
with the ammonium ion. The success of the reaction
with tertiary diamines when triethylamine fails, deserves
a comment. The pKa values for TEA and DABCO are
quite close, in water as well as in other solvents, even
though their ion-pair basicity differs.29 Both data, how-
ever, refer to equilibrium conditions (thermodynamic
basicity), while the irreversible dehydration step leading
to the final cycloadducts 6 and 7 depends on the Transi-
tion State (TS): the release of a proton from the ammo-
nium ion to deliver water is much easier for the diamine
that loses a proton from one N atom while binding
another proton to the other N atom (the TS is illustrated
with curly arrows). Further investigations are necessary
to add support to this mechanism.
20. Kanemasa, S.; Matsuda, H.; Kamimura, A.; Kakinami, T.
Tetrahedron 2000, 56, 1057–1064.
21. Caldirola, P.; De Amici, M.; De Micheli, C.; Wade, P. A.;
Price, D. T.; Boreznak, J. F. Tetrahedron 1986, 42, 5267–
5272.
22. Wade, P. A.; Bereznak, J. F. J. Org. Chem. 1987, 52, 2973–
2977.
Acknowledgements
Financial support by the Ente Cassa di Risparmio di
Firenze for the purchase of the 400 MHz NMR instru-
ment is gratefully acknowledged. L.C. thanks Universita
`
23. Wade, P. A.; Hinney, H. R. J. Am. Chem. Soc. 1979, 101,
1319–1320.
di Firenze for Doctoral fellowship.
24. McKillop, A.; Kobylecki, R. J. Tetrahedron 1974, 30,
1365–1371.
25. Nelson, S. D.; Kasparian, D. J.; Trager, W. F. J. Org.
Chem. 1972, 37, 2686–2688.
References and notes
1. Mukaiyama, T.; Hoshino, T. J. Am. Chem. Soc. 1960, 82,
5339–5342.
2. Vigalok, I. V.; Moisak, I. E.; Svetlakov, N. V. Chem.
Heterocycl. Compd. 1969, 5, 133; (Khim. Geterotsikl.
Soedin. 1969, 5, 175).
26. Torssell, K. B. G. Nitrile Oxides, Nitrones, Nitronates in
Organic Synthesis; VCH: New York, 1988.
27. See Footnote 4a in Ref. 6.
`
28. Roger, P.-Y.; Durand, A.-C.; Rodriguez, J.; Dulcere, J.-P.
Org. Lett. 2004, 6, 2027–2029.
29. Streitwieser, A.; Kim, Y.-J. J. Am. Chem. Soc. 2000, 122,
11783–11786.
3. Duranleau, R. G.; Larkin, J. M.; Newman, S. R. US
Patent 1978, 4089867. Chem. Abstr. 1978, 89, 109515.