G. Li, Z. Pan, H. Lin et al.
Journal of Alloys and Compounds 875 (2021) 160006
electrochemical H-type cell displays a high ammonia yield rate of
9.3 × 10−11 mol s−1 cm−2 and a Faradaic efficiency of 6.3%. This sig-
nificant advance opens a window of opportunity for breakthroughs
in the development of ambient ammonia synthesis technologies.
[13] M.M. Shi, D. Bao, B.R. Wulan, Y.H. Li, Y.F. Zhang, J.M. Yan, Q. Jiang, Au sub-na-
noclusters on TiO2 toward highly efficient and selective electrocatalyst for N2
conversion to NH3 at ambient conditions, Adv. Mater. 29 (2017) 2–7, https://doi.
[14] J. Zheng, Y. Lyu, M. Qiao, J.P. Veder, R.D. Marco, J. Bradley, R. Wang, Y. Li, A. Huang,
S.P. Jiang, S. Wang, Tuning the electron localization of gold enables the control of
nitrogen-to-ammonia fixation, Angew. Chem. Int. Ed. 58 (2019) 18604–18609,
[15] H. Wang, D. Yang, S. Liu, S. Yin, H. Yu, Y. Xu, X. Li, Z. Wang, L. Wang,
Nanostructured porous carbons derived from nitrogen-doped graphene nanor-
ibbon aerogels for lithium-sulfur batteries, J. Colloid Interface Sci. 541 (2019)
[16] S.Z. Andersen, V. Čolić, S. Yang, J.A. Schwalbe, A.C. Nielander, J.M. McEnaney,
K. Enemark-Rasmussen, J.G. Baker, A.R. Singh, B.A. Rohr, M.J. Statt, S.J. Blair,
S. Mezzavilla, J. Kibsgaard, P.C.K. Vesborg, M. Cargnello, S.F. Bent, T.F. Jaramillo,
I.E.L. Stephens, J.K. Nørskov, I. Chorkendorff, A rigorous electrochemical am-
monia synthesis protocol with quantitative isotope measurements, Nature 570
CRediT authorship contribution statement
L.A. conceived the idea and supervised the project. G.L. and Z.P.
designed the experiments. G.L. performed the experiments and
prepared the manuscript. All of the authors analyzed the data and
commented on the manuscript.
Correspondence and requests for materials should be addressed
to L.A.
Declaration of Competing Interest
[17] S. Cheng, Y.-J. Gao, Y.-L. Yan, X. Gao, S.-H. Zhang, G.-L. Zhuang, S.-W. Deng, Z.-
Z. Wei, X. Zhong, J.-G. Wang, Oxygen vacancy enhancing mechanism of nitrogen
reduction reaction property in Ru/TiO2, J. Energy Chem. 39 (2019) 144–151,
[18] Y. Yao, H. Wang, X. Yuan, H. Li, M. Shao, Electrochemical nitrogen reduction
The authors declare that they have no known competing fi-
nancial interests or personal relationships that could have appeared
to influence the work reported in this paper.
Acknowledgements
[19] Y. Chen, B. Wu, B. Sun, N. Wang, W. Hu, S. Komarneni, N-doped porous carbon
self-generated on nickel oxide nanosheets for electrocatalytic N2 fixation with a
faradaic efficiency beyond 30%, ACS Sustain. Chem. Eng. 7 (2019) 18874–18883,
This work is supported by a grant from the Research Grants
Council of the Hong Kong Special Administrative Region, China
(Project No. 15222018) and a grant from The Hong Kong Polytechnic
University (1-ZE30).
[20] K. Chu, Y.P. Liu, J. Wang, H. Zhang, NiO nanodots on graphene for efficient
electrochemical N2 reduction to NH3, ACS Appl. Energy Mater.
2 (2019)
[21] L. Li, C. Tang, B. Xia, H. Jin, Y. Zheng, S.Z. Qiao, Two-dimensional mosaic bismuth
nanosheets for highly selective ambient electrocatalytic nitrogen reduction, ACS
[22] Y.C. Hao, Y. Guo, L.W. Chen, M. Shu, X.Y. Wang, T.A. Bu, W.Y. Gao, N. Zhang, X. Su,
X. Feng, J.W. Zhou, B. Wang, C.W. Hu, A.X. Yin, R. Si, Y.W. Zhang, C.H. Yan,
Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals
Appendix A. Supporting information
Supplementary data associated with this article can be found in
[23] R. Gómez, A. Fernández-Vega, J.M. Feliu, A. Aldaz, Effects of irreversibly adsorbed
bismuth and antimony on hydrogen adsorption and evolution on Pt(100), J. Phys.
References
[24] D. Yao, C. Tang, L. Li, B. Xia, A. Vasileff, H. Jin, Y. Zhang, S.Z. Qiao, In situ frag-
mented bismuth nanoparticles for electrocatalytic nitrogen reduction, Adv.
[25] Z. Fang, P. Wu, Y. Qian, G. Yu, Gel-derived amorphous bismuth–nickel alloy
promotes electrocatalytic nitrogen fixation via optimizing nitrogen adsorption
[26] N. Gerrard, K. Mistry, G.R. Darling, A. Hodgson, Water dissociation and hydroxyl
[1] A.J. Medford, M.C. Hatzell, Photon-driven nitrogen fixation: current progress,
thermodynamic considerations, and future outlook, ACS Catal.
7 (2017)
[2] Y. Zhao, R. Shi, X. Bian, C. Zhou, Y. Zhao, S. Zhang, F. Wu, G.I.N. Waterhouse,
L.Z. Wu, C.H. Tung, T. Zhang, Ammonia detection methods in photocatalytic and
electrocatalytic experiments: how to improve the reliability of NH 3 production
[3] Y. Guo, Z. Pan, L. An, Carbon-free sustainable energy technology: direct ammonia
[27] G. Chen, T. Wang, P. Liu, Z. Liao, H. Zhong, G. Wang, P. Zhang, M. Yu, E. Zschech,
M. Chen, J. Zhang, X. Feng, Promoted oxygen reduction kinetics on nitrogen-
doped hierarchically porous carbon by engineering proton-feeding centers,
[28] W. Karim, C. Spreafico, A. Kleibert, J. Gobrecht, J. Vandevondele, Y. Ekinci, J.A.
Van Bokhoven, Catalyst support effects on hydrogen spillover, Nature 541 (2017)
[4] J. Deng, J.A. Iñiguez, C. Liu, Electrocatalytic nitrogen reduction at low tempera-
[5] M. Li, H. Huang, J. Low, C. Gao, R. Long, Y. Xiong, Erratum: borderud SP, Li Y,
Burkhalter JE, Sheffer CE and Ostroff JS. Electronic cigarette use among patients
with cancer: Characteristics of electronic cigarette users and their smoking
cessation outcomes. Cancer. doi: 10.1002/ cncr.28811, Cancer 121 (2015) 800,
[29] Y.S. Li, T.S. Zhao, A high-performance integrated electrode for anion-exchange
membrane direct ethanol fuel cells, Int. J. Hydrog. Energy 36 (2011) 7707–7713,
[30] Y. Liu, D. Li, J. Yu, B. Ding, Stable confinement of black phosphorus quantum dots
on black tin oxide nanotubes: a robust, double‐active electrocatalyst toward
efficient nitrogen fixation, Angew. Chem. 131 (2019) 16591–16596, https://doi.
[31] W. Guo, K. Zhang, Z. Liang, R. Zou, Q. Xu, Electrochemical nitrogen fixation and
utilization: theories, advanced catalyst materials and system design, Chem. Soc.
[32] C. Tang, H. Sen Wang, H.F. Wang, Q. Zhang, G.L. Tian, J.Q. Nie, F. Wei, Spatially
confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped
graphene frameworks leading to superior oxygen evolution reactivity, Adv.
[33] H.K. Lee, C.S.L. Koh, Y.H. Lee, C. Liu, I.Y. Phang, X. Han, C.-K.K. Tsung, X.Y. Ling,
C. Liu, H.K. Lee, C.-K.K. Tsung, X.Y. Ling, I.Y. Phang, C.S.L. Koh, Y.H. Lee, Favoring the
unfavored: selective electrochemical nitrogen fixation using a reticular chemistry
[34] H. Cohen, R.D. Barnard, Spectrophotometric method for determination of hy-
[35] Y. Wang, M. miao Shi, D. Bao, F. lu Meng, Q. Zhang, Y. tong Zhou, K. hua Liu,
Y. Zhang, J. zhi Wang, Z. wen Chen, D. peng Liu, Z. Jiang, M. Luo, L. Gu, Q. hua
Zhang, X. zhong Cao, Y. Yao, M. hua Shao, Y. Zhang, X.B. Zhang, J.G. Chen, J. min
Yan, Q. Jiang, Generating defect-rich bismuth for enhancing the rate of nitrogen
[6] R. Zhao, H. Xie, L. Chang, X. Zhang, X. Zhu, X. Tong, T. Wang, Y. Luo, P. Wei,
Z. Wang, X. Sun, Plant membrane transport research in the post-genomic era,
[7] K.H. Liu, H.X. Zhong, S.J. Li, Y.X. Duan, M.M. Shi, X.B. Zhang, J.M. Yan, Q. Jiang,
Advanced catalysts for sustainable hydrogen generation and storage via hy-
drogen evolution and carbon dioxide/nitrogen reduction reactions, Prog. Mater.
[8] S. Liu, M. Wang, T. Qian, H. Ji, J. Liu, C. Yan, Facilitating nitrogen accessibility to
boron-rich covalent organic frameworks via electrochemical excitation for effi-
[9] M. Wang, S. Liu, H. Ji, J. Liu, C. Yan, T. Qian, Unveiling the essential nature of
lewis basicity in thermodynamically and dynamically promoted nitrogen
[10] G. Li, Y. Yu, Z. Pan, L. An, Two-dimensional layered SnO2 nanosheets for ambient
ammonia synthesis, ACS Appl. Energy Mater. 3 (2020) 6735–6742, https://doi.
[11] G. Li, B. Huang, Z. Pan, X. Su, Z. Shao, L. An, Advances in three-dimensional
graphene-based materials: configurations, preparation and application in sec-
ondary metal (Li, Na, K, Mg, Al)-ion batteries, Energy Environ. Sci. 12 (2019)
[12] B.H.R. Suryanto, H.L. Du, D. Wang, J. Chen, A.N. Simonov, D.R. MacFarlane,
Challenges and prospects in the catalysis of electroreduction of nitrogen to
7