Organic Letters
Letter
2014, 510, 485−496. (h) Yetra, S. R.; Patra, A.; Biju, A. T. Synthesis
2015, 47, 1357−1378. (i) Menon, R. S.; Biju, A. T.; Nair, V. Chem.
Soc. Rev. 2015, 44, 5040−5052. (j) Mahatthananchai, J.; Bode, J. W.
Acc. Chem. Res. 2014, 47, 696−707. (k) Ryan, S. J.; Candish, L.;
Lupton, D. W. Chem. Soc. Rev. 2013, 42, 4906−4917. (l) De Sarkar,
S.; Biswas, A.; Samanta, R. C.; Studer, A. Chem. - Eur. J. 2013, 19,
4664−4678. (m) Grossmann, A.; Enders, D. Angew. Chem., Int. Ed.
2012, 51, 314−325. (n) Bugaut, X.; Glorius, F. Chem. Soc. Rev. 2012,
41, 3511−3522. (o) Izquierdo, J.; Hutson, G. E.; Cohen, D. T.;
Scheidt, K. A. Angew. Chem., Int. Ed. 2012, 51, 11686−11698.
(p) Biju, A. T.; Kuhl, N.; Glorius, F. Acc. Chem. Res. 2011, 44, 1182−
1195. See also: (q) Biju, A. T. N-Heterocyclic carbenes in
organocatalysis; Wiley-VCH: Weinheim, Germany, 2019.
(6) For reviews on α,β-unsaturated acylazoliums, see: (a) Mondal,
S.; Yetra, S. R.; Mukherjee, S.; Biju, A. T. Acc. Chem. Res. 2019, 52,
425−436. (b) Zhang, C.; Hooper, J. F.; Lupton, D. W. ACS Catal.
2017, 7, 2583−2596.
(7) For the preliminary work, see: Zeitler, K. Org. Lett. 2006, 8,
637−640.
(8) For selected reports from our group, see: (a) Ghosh, A.; Barik,
S.; Biju, A. T. Org. Lett. 2019, 21, 8598−8602. (b) Mukherjee, S.;
Shee, S.; Poisson, T.; Besset, T.; Biju, A. T. Org. Lett. 2018, 20, 6998−
7002. (c) Mondal, S.; Ghosh, A.; Mukherjee, S.; Biju, A. T. Org. Lett.
2018, 20, 4499−4503. (d) Mukherjee, S.; Ghosh, A.; Marelli, U. K.;
Biju, A. T. Org. Lett. 2018, 20, 2952−2955. (e) Yetra, S. R.; Mondal,
S.; Mukherjee, S.; Gonnade, R. G.; Biju, A. T. Angew. Chem., Int. Ed.
2016, 55, 268−272. (f) Yetra, S. R.; Mondal, S.; Suresh, E.; Biju, A. T.
Org. Lett. 2015, 17, 1417−1420. (g) Yetra, S. R.; Roy, T.; Bhunia, A.;
Porwal, D.; Biju, A. T. J. Org. Chem. 2014, 79, 4245−4251.
(9) (a) De Sarkar, S.; Studer, A. Angew. Chem., Int. Ed. 2010, 49,
9266−9269. (b) Samanta, R. C.; Maji, B.; De Sarkar, S.; Bergander,
(15) For related 1,2-addition reactions of enamines, see: (a) Hick-
mott, P. W.; Sheppard, G. J. Chem. Soc. C 1971, 0, 2112−2115.
(b) Hargreaves, J. R.; Hickmott, P. W.; Hopkins, B. J. J. Chem. Soc. C
1968, 0, 2599−2603. See also: (c) Stork, G.; Kretchmer, R. A.;
Schlessinger, R. H. J. Am. Chem. Soc. 1968, 90, 1647−1648.
(d) Benovsky, P.; Stephenson, G. A.; Stille, J. R. J. Am. Chem. Soc.
1998, 120, 2493−2500.
(16) Struble, J. R.; Bode, J. W. Org. Synth. 2010, 87, 362−376.
(18) Treatment of the product 3a with 2a under the present reaction
conditions did not afford any products, indicating the role of C2-H in
the present reaction. Mechanistically, the tautomerization events of
intermediate C (Scheme 2) might not be feasible with substrates
having C2-substitution.
(19) Breslow, R. J. Am. Chem. Soc. 1958, 80, 3719−3726.
(20) For recent reviews on arynes, see: (a) Takikawa, H.; Nishii, A.;
Sakai, T.; Suzuki, K. Chem. Soc. Rev. 2018, 47, 8030−8056. (b) Roy,
T.; Biju, A. T. Chem. Commun. 2018, 54, 2580−2594. (c) Shi, J.; Li,
Y.; Li, Y. Chem. Soc. Rev. 2017, 46, 1707−1719. (d) Bhojgude, S. S.;
Bhunia, A.; Biju, A. T. Acc. Chem. Res. 2016, 49, 1658−1670.
(21) Performing the present C2-functionalization reaction on a 1.0
mmol scale afforded 3a in 80% yield and 98:2 er, demonstrating that
the method is scalable and practical.
̈
̈
K.; Frohlich, R.; Muck-Lichtenfeld, C.; Mayr, H.; Studer, A. Angew.
Chem., Int. Ed. 2012, 51, 5234−5238. See also: (c) Ryan, S. J.;
Candish, L.; Lupton, D. W. J. Am. Chem. Soc. 2009, 131, 14176−
14177.
(10) (a) Kaeobamrung, J.; Mahatthananchai, J.; Zheng, P.; Bode, J.
W. J. Am. Chem. Soc. 2010, 132, 8810−8812. (b) Mahatthananchai, J.;
Zheng, P.; Bode, J. W. Angew. Chem., Int. Ed. 2011, 50, 1673−1677.
(c) Mahatthananchai, J.; Kaeobamrung, J.; Bode, J. W. ACS Catal.
2012, 2, 494−503. See also: (d) Chen, K.-Q.; Gao, Z.-H.; Ye, S.
Angew. Chem., Int. Ed. 2019, 58, 1183−1187. (e) Yi, L.; Zhang, Y.;
Zhang, Z.-F.; Sun, D.; Ye, S. Org. Lett. 2017, 19, 2286−2289. (f) Liu,
B.; Wang, W.; Huang, R.; Yan, J.; Wu, J.; Yang; Xue, W.; Yang, S.; Jin,
Z.; Chi, Y. R. Org. Lett. 2018, 20, 260−263. (g) Chen, Q.; Zhu, T.;
Majhi, P. K.; Mou, C.; Chai, H.; Zhang, J.; Zhuo, S.; Chi, Y. R. Chem.
Sci. 2018, 9, 8711−8715. (h) Cheng, J.; Huang, Z.; Chi, Y. R. Angew.
Chem., Int. Ed. 2013, 52, 8592−8596. (i) Kravina, A. G.;
Mahatthananchai, J.; Bode, J. W. Angew. Chem., Int. Ed. 2012, 51,
9433−9436.
(11) Wanner, B.; Mahatthananchai, J.; Bode, J. W. Org. Lett. 2011,
13, 5378−5381.
(12) For related reports, see: (a) Gao, Z.-H.; Chen, X.-Y.; Zhang,
H.-M.; Ye, S. Chem. Commun. 2015, 51, 12040−12043. (b) Xie, D.;
Yang, L.; Lin, Y.; Zhang, Z.; Chen, D.; Zeng, X.; Zhong, G. Org. Lett.
2015, 17, 2318−2321. (c) Zhang, Z.; Zeng, X.; Xie, D.; Chen, D.;
Ding, L.; Wang, A.; Yang, L.; Zhong, G. Org. Lett. 2015, 17, 5052−
5055. (d) Yetra, S. R.; Bhunia, A.; Patra, A.; Mane, M. V.; Vanka, K.;
Biju, A. T. Adv. Synth. Catal. 2013, 355, 1089−1097.
(13) For related reactions proceeding via the 1,4-addition leading to
oxygen heterocycles, see: (a) Ni, Q.; Song, X.; Raabe, G.; Enders, D.
Chem. - Asian J. 2014, 9, 1535−1538. (b) Lu, Y.; Tang, W.; Zhang, Y.;
Du, D.; Lu, T. Adv. Synth. Catal. 2013, 355, 321−326. (c) Du, D.; Hu,
Z.; Jin, J.; Lu, Y.; Tang, W.; Wang, B.; Lu, T. Org. Lett. 2012, 14,
1274−1277.
(14) It seems very unlikely that the 3-aminobenzofuran undergoes
1,4-addition to α,β-unsaturated acylazoliums because this has to break
the aromaticity of benzofuran moiety, and the presence of a tosyl
group is likely to make the N−H harder for the 1,2-addition.
E
Org. Lett. XXXX, XXX, XXX−XXX