M. Lega et al. / Tetrahedron 69 (2013) 4061e4065
4065
ester), 1652 (C]O amide) cmꢀ1. 1H NMR (200 MHz, CDCl3):
d
¼8.97
25 cm) column, 0.05:99.5 isopropanol/hexane, UV 254 nm, re-
tention times: (S)-B: 19 min; (R)-B: 35 min. The structures of the
products were confirmed by comparison with published spectro-
(d, 3JNH,1-H¼9.3 Hz, 1H, NH), 8.58 (d, 3J¼5.6 Hz, 1H, aromatic), 8.22
(d, 3JNH,2-H¼9.4 Hz,1H, NH), 8.11 (d, 3J¼5.6 Hz,1H, aromatic), 7.57 (s,
1H, aromatic), 7.51 (s, 1H, aromatic), 6.83e6.78 (m, 1H, aromatic),
scopic data:18 1H NMR (400 MHz, CDCl3):
d
¼7.25e7.14 (m, 5 Hz,
3
6.75e6.69 (m, 1H, aromatic), 5.46 (t, J1-H,NH¼3J1-H,2-H, 1H, 1-H),
aromatic), 5.92 (ddd, 3J¼17.0, 10.2, 8.2 Hz, 1H), 5.06 (d, 3J¼17.0 Hz,
1H), 5.02 (d, 3J¼10.2 Hz, 1H), 4.04 (dd, 3J¼11.0, 8.2 Hz, 1H), 3.80 (d,
3J¼11.0 Hz, 1H), 3.68 (s, 3H), 3.42 (3H).
5.38 (t, 3J3-H,2-H¼3J3-H,4-H¼9.9 Hz,1H, 3-H), 5.17 (t, 3J4-H,3-H¼3J4-H,5-H
,
3
3
0
1H, 4-H), 4.47 (q, 1H, 2-H), 4.29 (dd, J6-H,5-H¼4.1 Hz, J6-H,6 -
¼12.4 Hz, 1H, 6-H), 4.07 (dd, 3J6 -H,5-H¼1.8 Hz, 1H, 60-H), 3.93e3.88
0
H
(m, 1H, 5-H), 3.76 (s, 6H, 2OMe) 2.06 (s, 3H, AcO), 1.98 (s, 3H, AcO),
1.88 (s, 3H, AcO); 13C NMR (50.3 MHz, CDCl3)
d¼171.2, 171.1, 169.9,
Acknowledgements
167.2, 167.1, 165.7, 165.6, 151.1, 151.0, 149.9, 149.7, 113.6, 113.4, 108.3,
108.0, 80.3, 74.1, 73.4, 68.7, 62.4, 55.9 (2C), 53.4, 21.2, 21.1, 21.0.
HRMS (MALDI) calcd for C26H30N4O11 [M]þ: 574.1911, found
ꢀ
We are grateful to the Ministero dell’Istruzione, dell’Universita e
della Ricerca (Progetti di Ricerca di Interesse Nazionale e Bando
2009) for financial support, which allowed M.L. to perform work in
Stockholm. The authors thank Dr. Mikhail Gorlov, Department of
Chemistry, KTH, for a generous gift of some RTILs.
574.5331. elpaN-qui: [
a
] ꢀ150 (c 1.0, 586 nm, 25 ꢁC, CH2Cl2); mp
117 ꢁC; nmax (Nujol): 1742 (C]O ester), 1674 (C]O amide) cmꢀ1. 1H
NMR (400 MHz, CDCl3):
d
¼9.36 (d, 3JNH,1-H¼9.2 Hz,1H, NH), 8.48 (d,
3JNH,2-H¼9.5 Hz, 1H, NH), 8.22 (d, 3J¼8.8 Hz, 1H, aromatic),
8.15e8.10 (m, 2H, aromatic), 8.05e7.99 (m, 2H, aromatic), 7.83 (d,
3J¼8.5 Hz, 1H, aromatic), 7.76e7.70 (m, 2H, aromatic), 7.65 (d,
3J¼8.8 Hz, 1H, aromatic), 7.58e7.53 (m, 2H, aromatic), 7.45 (t,
3J¼7.5 Hz, 1H, aromatic), 5.66 (t, 3J1-H,NH¼3J1-H,2-H, 1H, 1-H), 5.54 (t,
3J3-H,2-H¼3J3-H,4-H¼9.9 Hz, 1H, 3-H), 5.27 (t, 3J4-H,3-H¼3J4-H,5-H, 1H, 4-
References and notes
1. Lu, Z.; Ma, S. Angew. Chem., Int. Ed. 2008, 47, 258e297.
2. Trost, B. M.; Zhang, T.; Sieber, J. D. Chem. Sci. 2010, 1, 427e440.
3. Trost, B. M.; Crawley, M. L. Top. Organometal. Chem. 2012, 38, 321e340.
4. (a) Belda, O.; Moberg, C. Acc. Chem. Res. 2004, 37, 159e167; (b) Moberg, C. Top.
Organometal. Chem. 2012, 38, 209e234.
3
3
0
H), 4.69 (q, 1H, 2-H), 4.37 (dd, J6-H,5-H¼4.2 Hz, J6-H,6 -H¼12.4 Hz,
1H, 6-H), 4.07 (dd, 3J6 -H,5-H¼1.8 Hz, 1H, 60-H), 3.92e3.88 (m, 1H, 5-
0
€
5. (a) Helmchen, G.; Dahnz, A.; Dubon, P.; Schelwies, M.; Weihofen, R. Chem.
H), 2.07 (s, 3H, AcO), 2.04 (s, 3H, AcO), 1.91 (s, 3H, AcO); 13C NMR
Commun. 2007, 675e691; (b) Liu, W.-B.; Xia, J.-B.; You, S.-L. Top. Organometal.
Chem. 2012, 38, 155e208.
6. Bartels, B.; Garcia-Yebra, C.; Rominger, F.; Helmchen, G. Eur. J. Inorg. Chem. 2002,
2569e2586.
7. Kaiser, N. F. K.; Bremberg, U.; Larhed, M.; Moberg, C.; Hallberg, A. Angew. Chem.,
Int. Ed. 2000, 39, 3595e3598.
8. See for example: (a) Trost, B. M.; Andersen, N. G. J. Am. Chem. Soc. 2002, 124,
14320e14321; (b) Belda, O.; Lundgren, S.; Moberg, C. Org. Lett. 2003, 5,
2275e2278.
(100.6 MHz, CDCl3)
d
¼171.2, 170.0, 169.0, 166.0 (2C), 148.8, 148.7,
146.9, 146.6, 137.7, 137.6, 130.7, 130.5, 130.4, 130.4, 129.8, 129.6,
128.6, 128.4, 127.9, 127.8, 119.3, 119.0, 80.6, 74.3, 73.6, 68.8, 62.4,
53.6, 21.1, 21.0, 20.9. HRMS (ESI) calcd for C32H31N4O9 [MþH]þ:
615.2091, found 615.2071.
9. (a) Trost, B. M.; Hachiya, I. J. Am. Chem. Soc. 1998, 120, 1104e1105; (b) Belda, O.;
Moberg, C. Coord. Chem. Rev. 2005, 249, 727e740.
4.6. Synthesis of elpaN-py0
10. (a) Belda, O.; Kaiser, N.-F.; Bremberg, U.; Larhed, M.; Hallberg, A.; Moberg, C. J.
Org. Chem. 2000, 65, 5868e5870; (b) Belda, O.; Moberg, C. Synthesis 2002,
1601e1606.
11. We decided to use carbohydrates as building blocks for chiral ligands for
various reasons: they are easily available, they are ‘naturally chiral’, they are
highly functionalized, and their chemistry is extremely developed. For recent
reviews on this topic see: (a) Steinborn, D.; Junicke, H. Chem. Rev. 2000, 100,
The elpaN-py ligand (0.50 mmol) was dissolved in MeOH
(10 mL) under a NH3 atmosphere. After 20 h the solvent was re-
moved under vacuum, affording the pure product as a solid in
quantitative yield. Relevant NMR data: elpaN-py0: [
a
] ꢀ26.0 (c 1.0,
586 nm, 25 ꢁC, CH2Cl2); nmax (Nujol): 1669 (C]O amide) cmꢀ1. 1H
ꢀ
ꢀ
ꢀ
4283e4317; (b) Dieguez, M.; Pamies, O.; Ruiz, A.; Diaz, Y.; Castillon, S.; Claver, C.
NMR (400 MHz, D2O):
d
¼8.42 (m, 2H, aromatic), 7.75 (m, 2H, aro-
ꢀ
ꢀ
Coord. Chem. Rev. 2004, 248, 2165e2192; (c) Dieguez, M.; Pamies, O.; Claver, C.
Chem. Rev. 2004, 104, 3189e3215; (d) Diaz, Y.; Castillon, S.; Claver, C. Chem. Soc.
Rev. 2005, 34, 702e713; (e) Dieguez, M.; Claver, C.; Pamies, O. Eur. J. Org. Chem.
2007, 4621e4634; (f) Boysen, M. M. K. Chem.dEur. J. 2007, 13, 8648e8659; (g)
Dieguez, M.; Pamies, O. Chem.dEur. J. 2008, 14, 944e960; (h) Benessere, V.; De
Roma, A.; Del Litto, R.; Ruffo, F. Coord. Chem. Rev. 2010, 254, 390e401; (i)
3
matic), 7.41 (m, 2H, aromatic), 5.37 (d, J1-H,NH¼3J1-H-2-H¼9.65 Hz,
ꢀ
ꢀ
1H, 1-H), 4.18 (t, 3J2-H,NH¼9.9 Hz, 1H, 2-H), 3.81 (m, 2H, 6-H and 3-
ꢀ
H), 3.70 (dd, 3J6 -H,5-H¼4.9 Hz, 1H, 60-H), 3.58 (m, 2H, 5-H and 4-H);
0
ꢀ
ꢀ
13C NMR (100.6 MHz, D2O)
d
¼171.0, 170.5, 151.8, 151.6, 151.3, 150.7,
ꢁ
ꢀ
Dieguez, M.; Pamies, O.; Woodward, S. Coord. Chem. Rev. 2010, 254, 2007e2030.
12. (a) Borriello, C.; Cucciolito, M. E.; Panunzi, A.; Ruffo, F. Tetrahedron: Asymmetry
2001, 12, 2467e2471; (b) Borriello, C.; Del Litto, R.; Panunzi, A.; Ruffo, F.
Tetrahedron: Asymmetry 2004, 15, 681e686; (c) De Roma, A.; D’Errico, A.; Del
Litto, R.; Magnolia, S.; Ruffo, F. Tetrahedron: Asymmetry 2006, 17, 2265e2269;
(d) De Roma, A.; Ruffo, F.; Woodward, S. Chem. Commun. 2008, 5384e5386; (e)
Benessere, V.; De Roma, A.; Ruffo, F. ChemSusChem 2008, 1, 425e430; (f) Ben-
essere, V.; Del Litto, R.; Moberg, C.; Ruffo, F. Eur. J. Org. Chem. 2009, 1352e1356;
(g) Benessere, V.; Ruffo, F. Tetrahedron: Asymmetry 2010, 21, 171e176; (h)
Benessere, V.; Lega, M.; Ruffo, F.; Silipo, A. Tetrahedron 2011, 67, 4826e4831.
13. Benessere, V.; De Roma, A.; Del Litto, R.; Lega, M.; Ruffo, F. Eur. J. Org. Chem.
2011, 5779e5782.
141.2 (2C), 130.6, 130.2, 125.7, 125.5, 82.0, 80.8, 76.8, 72.5, 63.5, 57.8.
HRMS (ESI) calcd for C18H20N4NaO6 [MþNa]þ: 411.1281, found
411.1279.
4.7. Microwave-assisted allylic alkylations
General procedure: two different stock solutions were pre-
pared: solution N, containing the nucleophile, was prepared by
adding dimethyl malonate (880 mL, 7.70 mmol) to a suspension of
60% NaH in mineral oil (27 mg, 0.68 mmol) in THF (10 mL), and
solution S, containing the substrate, was prepared by dissolving the
allylic carbonate (4 or 5) (7.1 mmol) in THF (10 mL). Then the ap-
propriate ligand (0.034 mmol) and Mo(CO)6 (6.9 mg, 0.026 mmol)
were transferred to a flame-dried SmithProcess VialTM. Solution N
ꢁ ꢁ
14. Bertho, A.; Revesz, A. Liebigs Ann. Chem. 1953, 581, 11e16.
15. Multiphase Homogeneous Catalysis; Cornils, B., Ed.; Wiley-VCH: Weinheim,
Germany, 2005.
16. Trost, B. M.; Dogra, K.; Hachiya, I.; Emura, T.; Hughes, D. L.; Krska, S.; Reamer, R.
A.; Palucki, M.; Yasuda, N.; Reider, P. J. Angew. Chem., Int. Ed. 2002, 41,
1929e1932.
17. Hughes, D. L.; Palucki, M.; Yasuda, N.; Reamer, R. A.; Reider, P. J. J. Org. Chem.
2002, 67, 2762e2768.
(1 mL), solution S, and BSA (208 mL, 0.85 mmol) were added in this
order, and the suspension was heated in the microwave cavity at
160 ꢁC for the desired time. The brown solution obtained was di-
luted with Et2O to a total volume of 10 mL, resulting in a dark
precipitate. A sample of the solution was filtered through silica gel
and analyzed by 1H NMR spectroscopy to determine the conversion
and the regioselectivity. The crude product was then purified by
chromatography on silica gel (eluent: petroleum ether/EtOAc, 5:1).
The ees were determined by HPLC using a Daicel OD-H (0.46 cm i.d.
18. (a) Hughes, D. L.; Lloyd-Jones, G. C.; Krska, S. W.; Gouriou, L.; Bonnet, V. D.; Jack,
K.; Sun, Y.; Mathre, D. J.; Reamer, R. A. Proc. Natl. Acad. Sci. U.S.A. 2004, 101,
5379e5384; (b) Krska, S. W.; Hughes, D. L.; Reamer, R. A.; Mathre, D. J.; Palucki,
M.; Yasuda, N.; Sun, Y.; Trost, B. M. Pure Appl. Chem. 2004, 76, 625e633; (c)
Lloyd-Jones, G. C.; Krska, S. W.; Hughes, D. L.; Gouriou, L.; Bonnet, V. D.; Jack, K.;
Sun, Y.; Reamer, R. A. J. Am. Chem. Soc. 2004, 126, 702e703.
19. (a) Rajanbabu, T. V.; Ayers, T. A.; Casalnuovo, A. L. J. Am. Chem. Soc. 1994, 116,
ꢁ
ꢁ
4101e4102; (b) Khiar, N.; Suarez, B.; Valdivia, V.; Fernandez, I. Synlett 2005,
2963e2967; (c) Grugel, H.; Albrecht, F.; Minuth, T.; Boysen, M. M. K. Org. Lett.
2012, 14, 3780e3783.