K. Park et al. / Tetrahedron Letters 53 (2012) 733–737
737
under vacuum, and the resulting crude product was purified by flash
chromatography on silica gel to give 3a (208.6 mg, 96% yield). The
spectroscopic data of 3a–j are as follows.
References and notes
1. Nilsson, M. Acta Chem. Scand. 1966, 20, 423–426.
2. Myers, A. G.; Tanaka, D.; Mannion, M. R. J. Am. Chem. Soc. 2002, 124, 11250–
11251.
Compound 3a: 1H NMR (300 MHz, DMSO d6) d 7.64–7.46 (m, 5H); 13C NMR
(75 MHz, DMSO-d6) d 154.3, 132.6, 130.9, 129.1, 119.0, 84.4, 81.7;
Compound 3b: 1H NMR (300 MHz, acetone d6) d 7.96 (d, J = 7.8 Hz, 2H), 7.73 (d,
J = 8.3 Hz, 2H), 2.82 (s, 3H); 13C NMR (75 MHz, acetone d6) d 154.6, 142.3,
133.6, 130.4, 117.4, 86.4, 81.4, 21. 6;
3. Gooben, L. J.; Deng, G.; Levy, L. M. Science 2006, 313, 662–664.
4. (a) Gooben, L. J.; Rodríguez, N.; Gooben, K. Angew. Chem., Int. Ed. 2008, 47, 3100–
3120; (b) Gooben, L. J.; Knauber, T. J. Org. Chem. 2008, 73, 8631–8634; (c) Fu, Z.;
Huang, S.; Su, W.; Hong, M. Org. Lett. 2010, 12, 4992–4995; (d) Shang, R.; Yang,
Z.; Zhang, S.; Liu, L. J. Am. Chem. Soc. 2010, 132, 14391–14393; (e) Rodríguez, N.;
Goossen, L. J. Chem. Soc. Rev. 2011, 40, 5030–5048; (f) Shang, R.; Ji, D.-S.; Chu, L.;
Fu, Y.; Liu, L. Angew. Chem., Int. Ed. 2011, 50, 4470–4474; (g) Chou, C.-M.;
Chatterjee, I.; Studer, A. Angew. Chem., Int. Ed. 2011, 50, 8614–8617.
5. (a) Moon, J.; Jeong, M.; Nam, H.; Ju, J.; Moon, J. H.; Jung, H. M.; Lee, S. Org. Lett.
2008, 10, 945–948; (b) Moon, J.; Jang, M.; Lee, S. J. Org. Chem. 2009, 74, 1403–
1406; (c) Park, K.; Bae, G.; Moon, J.; Choe, J.; Song, K. H.; Lee, S. J. Org. Chem.
2010, 75, 6244–6251; (d) Park, K.; Bae, G.; Park, A.; Kim, Y.; Choe, J.; Song, K. H.;
Lee, S. Tetrahedron Lett. 2011, 52, 576–580; (e) Lee, H. J.; Park, K.; Bae, G.; Choe,
J.; Song, K. H.; Lee, S. Tetrahedron Lett. 2011, 52, 5064–5067.
6. (a) Mitzel, F.; FitzGerald, S.; Beeby, A.; Faust, R. Eur. J. Org. Chem. 2004, 1136–
1142; (b) Boukouvalas, J.; Cote, S.; Ndzi, B. Tetrahedron Lett. 2007, 48, 105–107;
(c) Lehmann, F.; Lake, L.; Currier, E. A.; Olsson, R.; Hacksell, U.; Luthman, K. Eur.
J. Med. Chem. 2007, 42, 276–285; (d) Bonne, D.; Dekhane, M.; Zhu, J. Angew.
Chem., Int. Ed. 2007, 46, 2485–2488; (e) Falcone, D.; Li, J.; Kale, A.; Jones, G. B.
Bioorg. Med. Chem. Lett. 2008, 18, 934–937.
7. (a) Shimizu, H.; Fujimoto, K.; Furusyo, M.; Maeda, H.; Nanai, Y.; Mizuno, K.;
Inouye, M. J. Org. Chem. 2007, 72, 1530–1533; (b) Moon, J. H.; McDaniel, W.;
MacLean, P.; Hancock, L. F. Angew. Chem., Int. Ed. 2007, 46, 8223–8225; (c)
Sessions, L. B.; Cohen, B. R.; Grubbs, R. B. Macromolecules 2007, 40, 1926–1933;
(d) Dutta, T.; Woody, K. B.; Watson, M. D. J. Am. Chem. Soc. 2008, 130, 452–453.
8. (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467–
4470; (a) For reviews on the Sonogashira reactions, see: (b) Tykwinski, R. P.
Angew. Chem., Int. Ed. 2003, 42, 1566–1568; (c) Negishi, E.; Anastasia, L. Chem.
Rev. 2003, 103, 1979–2017; (d) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew.
Chem., Int. Ed. 2005, 44, 4442–4489; (e) Yin, L.; Liebscher, J. Chem. Rev. 2007,
107, 133–173.
Compound 3c: 1H NMR (300 MHz, acetone d6) d 7.48 (d, J = 7.8 Hz, 2H), 6.88 (d,
J = 7.8 Hz, 2H), 3.84 (s, 3H); 13C NMR (75 MHz, acetone d6) d 161.8, 154.1,
134.7, 114.5, 111.1, 86.0, 80.3, 55.0;
Compound 3d: 1H NMR (300 MHz, CD3OD) d 8.76 (d, J = 7.8 Hz, 1H), 8.60 (t,
J = 8.3 Hz, J = 7.5 Hz, 1H), 8.52–8.44 (m, 2H), 3.67 (s, 3H); 13C NMR (75 MHz,
CD3OD) d 153.1, 140.9, 132.2, 129.8, 128.9, 125.0, 118.3, 83.7, 83.5, 18.7;
Compound 3e: 1H NMR (300 MHz, acetone d6) d 8.80 (d, J = 7.8 Hz, 1H), 8.74 (d,
J = 7.8 Hz, 1H), 8.35 (d, J = 7.8 Hz, 1H), 8.26 (t, J = 7.8 Hz, 1H), 5.16 (s, 3H); 13C
NMR (75 MHz, acetone d6) d 162.4, 154.8, 135.3, 133.4, 121.4, 112.1, 109.3,
85.5, 83.5, 56.2;
Compound 3f: 1H NMR (300 MHz, acetone d6) d 7.50 (d, J = 8.3 Hz, 1H), 7.35 (t,
J = 7.8 Hz, 1H), 6.97–6.90 (m, 2H), 3.92 (s, 3H), 3.35 (s, 1H); 13C NMR (75 MHz,
acetone d6) d 166.4, 163.1, 154.7, 136.3, 117.2, 84.8, 81.8;
Compound 3g: 1H NMR (300 MHz, acetone d6) d 7.66 (d, J = 7.8 Hz, 2H), 7.53 (d,
J = 7.8 Hz, 2H); 13C NMR (75 MHz, acetone d6) d 154.1, 137.0, 134.9, 129.8,
119.0, 84.1, 82.4;
Compound 3h: 1H NMR (300 MHz, acetone d6) d 8.05 (d, J = 8.3 Hz, 2H), 7.76 (d,
J = 7.8 Hz, 2H), 2.62 (s, 3H); 13C NMR (75 MHz, acetone d6) d 197.4, 154.4,
139.1, 133.7, 129.3, 124.7, 84.3, 83.9, 26.8;
Compound 3i: 1H NMR (300 MHz, acetone d6) d 8.00 (d, J = 8.3 Hz, 2H), 7.77 (d,
J = 7.8 Hz, 2H), 3.87 (s, 3H); 13C NMR (75 MHz, acetone d6) d 165.4, 154.0,
132.9, 131.2, 129.5, 123.6, 83.8, 82.9, 52.5;
Compound 3j: 1H NMR (300 MHz, acetone d6) d 8.15 (d, J = 7.8 Hz, 1H), 7.84 (d,
J = 8.3 Hz, 1H), 7.76 (d, J = 7.8 Hz, 1H), 7.71 (d, J = 8.3 Hz, 1H), 7.48 (t, J = 7.8 Hz,
1H), 7.40 (t, J = 7.8 Hz, 1H), 7.34 (t, J = 7.8 Hz, 1H); 13C NMR (75 MHz, acetone
d6) d 154.8, 134.1, 133.8, 133.7, 132.1, 129.4, 128.5, 127.7, 126.0, 125.9, 117.6,
86.5, 84.3.
Method B; Pd(PPh3)2Cl2 (35.1 mg, 0.05 mmol), 1,4-bis(diphenylphosphino)
butane (42.6 mg, 0.1 mmol), Cu(acac)2 (52.4 mg, 0.2 mmol), aryl halides
(2.0 mmol), and DBU (1.52 g, 10.0 mmol) were combined with DMSO
9. (a) Vouutchkova, A.; Coplin, A.; Leadbeater, N. E.; Crabtree, R. H. Chem.
Commun. 2008, 6312–6314; (b) Kim, H.; Lee, P. H. Adv. Synth. Catal. 2009, 351,
(4.0 mL), in
a small round-bottomed flask. Propiolic acid (1a) (140.0 mg,
ˇ
2827–2832; (c) Kolarovic, A.; Fáberová, Z. J. Org. Chem. 2009, 74, 7199; (d)
2.0 mmol) was dropped at 0–5 °C, and the flask was sealed with a septum. The
resulting mixture was stirred at 25 °C for 5 h. Then the reaction temperature
was increased to 60 °C, and the mixture was stirred for 6 h. The reaction was
poured into Ethyl acetate and washed with water saturated by NH4Cl. The
organic layer dried over MgSO4, and filtered. The solvent was removed under
vacuum, and the resulting crude product was purified by flash chromatography
on silica gel to give 4a (230.9 mg, 79% yield). The spectroscopic data of 4a-j are
as follows.
Ranjit, S.; Duan, Z.; Zhang, P.; Liu, X. Org. Lett. 2010, 12, 4134–4136; (e) Jia, W.;
Jiao, N. Org. Lett. 2010, 12, 2000–2003; (f) Zhang, W.-W.; Zhang, X.-G.; Li, J.-H. J.
Org. Chem. 2010, 75, 5259–5264; (g) Yu, M.; Pan, D.; Jia, W.; Chen, W.; Jiao, N.
Teterahedron Lett. 2010, 51, 1287; (h) Feng, C.; Loh, T.-P. Chem. Commun. 2010,
46, 4779–4781; (i) Zhao, D.; Gao, C.; Su, X.; He, You J.; Xue, Y. Chem. Commun.
ˇ
2010, 46, 9049–9051; (j) Kolarovic, A.; Schnürch, M.; Mihovilovic, M. D. J. Org.
Chem. 2011, 76, 2613–2618; (k) Park, J.; Park, E.; Kim, A.; Park, S.-A.; Lee, Y.; Chi,
K.-W.; Jung, Y. H.; Kim, I. S. J. Org. Chem. 2011, 76, 2214–2219.
10. (a) Gooben, L. J.; Rodriguez, N.; Manjolinho, F.; Lange, P. P. Adv. Synth. Catal.
2010, 352, 2913–2917; (b) Dingyi, Y.; Yugen, Z. Green Chem. 2011, 13, 1275–
1279.
11. (a) Saravanakumar, R.; Varghese, B.; Sankararaman, S. Cryst. Eng. Comm. 2009,
11, 337–346; (b) Zhang, X.; Zhang, W.-Z.; Ren, X.; Zhang, L.-L.; Lu, X.-B. Org.
Lett. 2011, 13, 2402–2405.
12. (a) Dalcanale, E.; Montanari, F. J. Org. Chem. 1986, 51, 567–569; (b) Webb, K. S.;
Ruszkay, S. J. Tetrahedron 1988, 54, 401–410.
13. Zhao, M.; Li, J.; Mano, E.; Song, Z.; Tschaen, D. M.; Grabowski, E. J. J.; Reider, P. J.
J. Org. Chem. 1999, 64, 2564–2566.
Compound 4a: 1H NMR (300 MHz, CDCl3) d 7.49–7.46 (m, 2H), 7.31–7.27 (m,
3H) 3.05 (s, 1H); 13C NMR (75 MHz, CDCl3) 132.1, 128.7, 128.2, 122.1, 83.6,
77.2;
Compound 4b: 1H NMR (300 MHz, CDCl3) d 7.40 (d, J = 7.8 Hz, 2H), 7.13 (d,
J = 7.8 Hz, 2H),3.04 (s, 1H), 2.36 (s, 3H); 13C NMR (75 MHz, CDCl3) d 138.9,
132.0, 129.1, 119.0, 83.8, 76.4, 21.5;
Compound 4c: 1H NMR (300 MHz, CDCl3) d 7.47 (d, J = 7.8 Hz, 2H), 6.87 (d,
J = 7.8 Hz, 2H), 3.84 (s, 3H), 3.05 (s, 1H); 13C NMR (75 MHz, CDCl3) d 159.9,
133.5, 114.1, 113.9, 83.6, 75.7, 55.6;
Compound 4d: 1H NMR (300 MHz, CDCl3) d 7.48 (d, J = 7.9 Hz, 1H), 7.16–7.27
(m, 3H), 3.29 (s, 1H), 2.47 (s, 3H); 13C NMR (75 MHz, CDCl3) d 140.4, 132.2,
129.4, 128.4, 125.5, 122.5, 80.4, 79.9, 18.6;
14. Dingyi, Y.; Yugen, Z. Geen Chem. 2011, 13, 1275–1279.
15. (a) Yoneda, N.; Matsuoka, S.; Miyaura, N.; Fukuhara, T.; Suzuki, A. Bull. Chem.
Soc. Jpn. 1990, 63, 2124–2126; (b) Sakamoto, T.; Shiga, F.; Yasuhara, A.;
Uchiyama, D.; Kondo, Y.; Yamanaka, H. Synthesis 1992, 746–748; (c) Kundu, N.
G.; Dasgupta, S. K. J. Chem. Soc., Perkin Trans. 1 1993, 2657–2663.
16. Radhakrishnan, U.; Stang, P. J. Org. Lett. 2001, 3, 859–860.
17. Lee, A. S.-Y.; Hu, Y.-J.; Chu, S.-F. Tetrahedron 2001, 57, 2121–2126.
18. Suzuka, T.; Okada, Y.; Ooshiro, K.; Uozumi, Y. Tetrahedron 2010, 66, 1064–1069.
19. When K2CO3 was employed as a base instead of DBU, the decarboxylative
homocoupled product, 1,4-diphenylbuta-1,3-diyne, was obtained in 21% yield.
See: Kim, Y.; Park, A.; Park, K.; Lee, S. Tetrahedron Lett. 2011, 52, 1766–1769.
20. We found that no decarboxylation of phenyl propiolic acid took place without
DBU.
Compound 4e: 1H NMR (300 MHz, CDCl3) d 7.50 (d, J = 8.3 Hz, 1H), 7.35 (t,
J = 7.8 Hz, 1H), 6.97–6.90 (m, 2H), 3.92 (s, 3H), 3.35 (s, 1H); 13C NMR (75 MHz,
CDCl3) d 160.5, 134.0, 130.2, 120.3, 111.1, 110.5, 81.0, 80.0, 55.7;
Compound 4f: 1H NMR (300 MHz, CDCl3) d 7.40 (d, J = 7.8 Hz, 2H), 7.13 (d,
J = 7.8 Hz, 2H), 3.04 (s, 1H); 13C NMR (75 MHz, CDCl3) d 163.09, 154.0, 138.9 ,
115.8, 83.7, 81.4;
Compound 4g: 1H NMR (300 MHz, CDCl3) d 7.41 (d, J = 7.8 Hz, 2H), 7.29 (d,
J = 7.8 Hz, 2H), 3.10 (s, 1H); 13C NMR (75 MHz, CDCl3) d 134.9, 133.3, 128.6,
120.6, 82.5, 78.2;
Compound 4h: 1H NMR (300 MHz, CDCl3) d 7.91 (d, J = 7.8 Hz, 2H), 7.57 (d,
J = 7.8 Hz, 2H), 3.26 (s, 1H), 2.61 (s, 3H); 13C NMR (75 MHz, CDCl3) d 197.2,
136.7, 132.2, 128.1, 126.9, 82.7, 80.3, 26.6;
21. Typical experimental procedure: Method A; Pd(PPh3)2Cl2 (35.1 mg, 0.05 mmol),
1,4-bis(diphenylphosphino)butane (42.6 mg, 0.1 mmol), aryl halides
(2.0 mmol), and DBU (1.52 g, 10.0 mmol) were combined with DMSO
Compound 4i: 1H NMR (300 MHz, CDCl3) d 7.97 (d, J = 7.8 Hz, 2H), 7.52 (d,
J = 7.8 Hz, 2H), 3.89 (s, 3H), 3.23 (s, 1H); 13C NMR (75 MHz, CDCl3) d 166.3,
132.0, 130.0, 129.4, 126.6, 82.70, 80.0, 52.2;
(4.0 mL), in
a small round-bottomed flask. Propiolic acid (1a) (140.0 mg,
Compound 4j: 1H NMR (300 MHz, CDCl3) d 8.15 (d, J = 8.3 Hz, 1H), 8.52 (d,
J = 7.8 Hz, 1H), 7.94 (d, J = 7.8 Hz, 1H), 7.67 (d, J = 7.8 Hz, 1H), 7.70 (t, J = 7.8 Hz,
1H), 7.62 (t, J = 7.8 Hz, 1H), 7.51(t, J = 7.8 Hz, 1H) 36.59 (s, 1H); 13C NMR
(75 MHz, CDCl3) d 133.5, 133.0, 131.2, 129.2, 128.2, 126.9, 126.4, 126.0, 125.0,
119.7, 82.0, 81.7.
2.0 mmol) was added, and the flask was sealed with a septum. The resulting
mixture was placed in an oil bath at 50 °C for 5 h. The reaction was poured into
Ethyl acetate and extracted with water saturated by NaHCO3. The aqueous
layer was acidified to pH 2.0 by cold 1 N HCl(aq) and extracted with CH2Cl2.
The organic layer dried over MgSO4, and filtered. The solvent was removed