Inorganic Chemistry
Article
(9) Miller, A.-F. Superoxide dismutases: active sites that save, but a
protein that kills. Curr. Opin. Chem. Biol. 2004, 8, 162−168.
(10) Grove, L. E.; Brunold, T. C. Second-sphere tuning of the metal
ion reduction potentials in iron and manganese superoxide
dismutases. Comments Inorg. Chem. 2008, 29, 134−168.
(11) Su, C.; Oliw, E. H. Manganese Lipoxygenase: Purificationand-
characterization. J. Biol. Chem. 1998, 273, 13072−13079.
(12) Su, C.; Sahlin, M.; Oliw, E. H. Kinetics of Manganese
Lipoxygenase with a Catalytic Mononuclear Redox Center. J. Biol.
Chem. 2000, 275, 18830−18835.
(32) Borovik, A. S. Bioinspired Hydrogen Bond Motifs in Ligand
Design: The Role of Noncovalent Interactions in Metal Ion Mediated
Activation of Dioxygen. Acc. Chem. Res. 2005, 38, 54−61.
(33) Parsell, T. H.; Behan, R. K.; Green, M. T.; Hendrich, M. P.;
Borovik, A. S. Preparation and Properties of a Monomeric MnIV-Oxo
Complex. J. Am. Chem. Soc. 2006, 128, 8728−8729.
(34) Parsell, T. H.; Yang, M.-Y.; Borovik, A. S. C-H Bond Cleavage
with Reductants: Re-Investigating the Reactivity of Monomeric
MnIII/IV-Oxo Complexes and the Role of Oxo Ligand Basicity. J.
Am. Chem. Soc. 2009, 131, 2762−2763.
(35) Gupta, R.; Taguchi, T.; Lassalle-Kaiser, B.; Bominaar, E. L.;
Yano, J.; Hendrich, M. P.; Borovik, A. S. High-spin Mn−oxo
complexes and their relevance to the oxygen-evolving complex within
photosystem II. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 5319.
(36) Collins, T. J.; Ryabov, A. D. Targeting of High-Valent Iron-
TAML Activators at Hydrocarbons and Beyond. Chem. Rev. 2017,
117, 9140−9162.
(37) Young, K. J.; Takase, M. K.; Brudvig, G. W. An Anionic N-
Donor Ligand Promotes Manganese-Catalyzed Water Oxidation.
Inorg. Chem. 2013, 52, 7615−7622.
(38) Hitomi, Y.; Arakawa, K.; Funabiki, T.; Kodera, M. An
Iron(III)−Monoamidate Complex Catalyst for Selective Hydroxyla-
tion of Alkane CMH Bonds with Hydrogen Peroxide. Angew. Chem.,
Int. Ed. 2012, 51, 3448−3452.
(39) Gupta, R.; MacBeth, C. E.; Young, V. G., Jr.; Borovik, A. S.
Isolation of Monomeric MnIII/II-OH and MnIII-O Complexes from
Water: Evaluation of O-H Bond Dissociation Energies. J. Am. Chem.
Soc. 2002, 124, 1136−1137.
(40) Park, Y. J.; Matson, E. M.; Nilges, M. J.; Fout, A. R. Exploring
Mn−O bonding in the context of an electronically flexible secondary
coordination sphere: synthesis of a Mn(III)−oxo. Chem. Commun.
2015, 51, 5310.
(41) Li, Z.; Liu, Y.; Xia, Q.; Cui, Y. Chiral binary metal−organic
frameworks for asymmetric sequential reactions. Chem. Commun.
2017, 53, 12313.
(42) Shirin, Z.; Hammes, B. S.; Young, V. G., Jr.; Borovik, A. S.
Hydrogen Bonding in Metal Oxo Complexes: Synthesis and Structure
of a Monomeric Manganese(III)-Oxo Complex and Its Hydroxo
Analogue. J. Am. Chem. Soc. 2000, 122, 1836−1837.
(43) Hong, S.; Lee, Y.-M.; Sankaralingam, M.; Vardhaman, A. K.;
Park, Y. J.; Cho, K.-B.; Ogura, T.; Sarangi, R.; Fukuzumi, S.; Nam, W.
A Manganese(V)-Oxo Complex: Synthesis by Dioxygen Activation
and Enhancement of Its Oxidizing Power by Binding Scandium Ion. J.
Am. Chem. Soc. 2016, 138, 8523−8532.
(44) MacBeth, C. E.; Gupta, R.; Mitchell-Koch, K. R.; Young, V. G.,
Jr.; Lushington, G. H.; Thompson, W. H.; Hendrich, M. P.; Borovik,
A. S. Utilization of Hydrogen Bonds To Stabilize M-O(H) Units:
Synthesis and Properties of Monomeric Iron and Manganese
Complexes with Terminal Oxo and Hydroxo Ligands. J. Am. Chem.
Soc. 2004, 126, 2556−2567.
(45) Baglia, A. R.; Prokop-Prigge, K. A.; Neu, H. M.; Siegler, M. A.;
Golderg, D. P. Mn(V)(O) versus Cr(V)(O) Porphyrinoid Com-
plexes: Structural Characterization and Implications for Basicity
Controlling H-Atom Abstraction. J. Am. Chem. Soc. 2015, 137 (34),
10874−10877.
(13) Miller, A.-F. Superoxide dismutases: Ancient enzymes and new
insights. FEBS Lett. 2012, 586, 585−595.
(14) Chen, J.; Yoon, H.; Lee, Y.-M.; Seo, M. S.; Sarangi, R.;
Fukuzumi, S.; Nam, W. Tuning the reactivity of mononuclear
nonheme manganese(iv)-oxo complexes by triflic acid. Chem. Sci.
2015, 6, 3624−3632.
(15) Ray, K.; Pfaff, F. F.; Wang, B.; Nam, W. Status of Reactive Non-
Heme Metal−Oxygen Intermediates in Chemical and Enzymatic
Reactions. J. Am. Chem. Soc. 2014, 136 (40), 13942−13958.
(16) Kundu, S.; Schwalbe, M.; Ray, K. Metal-oxo-mediated O-O
bond formation reactions in chemistry and biology. BioInorg. React.
Mech. 2012, 8, 41.
(17) Costas, M.; Mehn, M. P.; Jensen, M. P.; Que, L. Dioxygen
Activation at Mononuclear Nonheme Iron Active Sites: Enzymes,
Models, and Intermediates. Chem. Rev. 2004, 104, 939−986.
(18) Nam, W. Dioxygen Activation by Metalloenzymes and Models.
Acc. Chem. Res. 2007, 40, 465−465.
(19) Kovacs, J. A. How Iron Activates O2. Science 2003, 299, 1024.
́
(20) Krebs, C.; Galonic Fujimori, D.; Walsh, C. T.; Bollinger, J. M.
Non-Heme Fe(IV)−Oxo Intermediates. Acc. Chem. Res. 2007, 40,
484−492.
(21) Kovaleva, E. G.; Lipscomb, J. D. Versatility of biological non-
heme Fe(II) centers in oxygen activation reactions. Nat. Chem. Biol.
2008, 4, 186.
(22) Layfield, J. P.; Hammes-Schiffer, S. Hydrogen Tunneling in
Enzymes and Biomimetic Models. Chem. Rev. 2014, 114, 3466−3494.
(23) Retegan, M.; Krewald, V.; Mamedov, F.; Neese, F.; Lubitz, W.;
Cox, N.; Pantazis, D. A. A five-coordinate Mn(iv) intermediate in
biological water oxidation: spectroscopic signature and a pivot
mechanism for water binding. Chem. Sci. 2016, 7, 72−84.
́
(24) Najafpour, M. M.; Renger, G.; Hołynska, M.; Moghaddam, A.
N.; Aro, E.-M.; Carpentier, R.; Nishihara, H.; Eaton-Rye, J. J.; Shen,
J.-R.; Allakhverdiev, S. I. Manganese Compounds as Water-Oxidizing
Catalysts: From the Natural Water-Oxidizing Complex to Nanosized
Manganese Oxide Structures. Chem. Rev. 2016, 116, 2886−2936.
(25) Kim, D.; Sakimoto, K. K.; Hong, D.; Yang, P. Artificial
Photosynthesis for Sustainable Fuel and Chemical Production. Angew.
Chem., Int. Ed. 2015, 54, 3259−3266.
́
(26) Sala, X.; Maji, S.; Bofill, R.; García-Anton, J.; Escriche, L.;
Llobet, A. Molecular Water Oxidation Mechanisms Followed by
Transition Metals: State of the Art. Acc. Chem. Res. 2014, 47, 504−
516.
(27) Blakemore, J. D.; Crabtree, R. H.; Brudvig, G. W. Molecular
Catalysts for Water Oxidation. Chem. Rev. 2015, 115, 12974−13005.
̈
̈
̌
(28) Karkas, M. D.; zkermark, B. Water oxidation using earth-
abundant transition metal catalysts: opportunities and challenges.
Dalton Trans 2016, 45, 14421−14461.
(46) Zaragoza, J. P. T.; Siegler, M. A.; Golderg, D. P. A Reactive
Manganese(IV)-Hydroxide Complex: A Missing Intermediate in
Hydrogen Atom Transfer by High-Valent Metal-Oxo Porphyrinoid
Compounds. J. Am. Chem. Soc. 2018, 140, 4380−4390.
(47) Sankaralingam, M.; Lee, Y.-M.; Pineda-Galvan, Y.; Karmalkar,
D. G.; Seo, M. S.; Jeon, S. H.; Pushkar, Y.; Fukuzumi, S.; Nam, W.
Redox Reactivity of a Mononuclear Manganese-Oxo Complex
Binding Calcium Ion and Other Redox-Inactive Metal Ions. J. Am.
Chem. Soc. 2019, 141 (3), 1324−1336.
̀
(29) Gamba, I.; Codola, Z.; Lloret-Fillol, J.; Costas, M. Making and
breaking of the OO bond at iron complexes. Coord. Chem. Rev. 2017,
334, 2−24.
(30) Lassalle-Kaiser, B.; Hureau, C.; Pantazis, D. A.; Pushkar, Y.;
́
̀
Guillot, R.; Yachandra, V. K.; Yano, J.; Neese, F.; Anxolabehere-
Mallart, E. Activation of a water molecule using a mononuclear Mn
complex: from Mn-aquo, to Mn-hydroxo, to Mn-oxyl via charge
compensation. Energy Environ. Sci. 2010, 3, 924−938.
(48) Luo, Y. R. Comprehensive Handbook of Chemical Bond Energies;
CRC Press: Boca Raton, FL, 2007.
(49) Wijeratne, G. B.; Corzine, B.; Day, V. W.; Jackson, T. A.
(31) Nishida, Y.; Morimoto, Y.; Lee, Y.-M.; Nam, W.; Fukuzumi, S.
Effects of Proton Acceptors on Formation of a Non-Heme Iron(IV)−
Oxo Complex via Proton-Coupled Electron Transfer. Inorg. Chem.
2013, 52, 3094−3101.
Saturation Kinetics in Phenolic O−H Bond Oxidation by a
I
Inorg. Chem. XXXX, XXX, XXX−XXX