and then the product mixture isolated and analyzed using the
same procedure as for the smaller-scale trials.
C. O. Kappe, Chem. Asian J., 2010, 5, 1274; (c) D. Mark, S. Haeberle,
G. Roth, F. von Stetten and R. Zengerle, Chem. Soc. Rev., 2010, 39,
1
153; (d) N. Kockmann and D. M. Roberge, Chem. Eng. Technol., 2009,
2, 1682; (e) C. Wiles and P. Watts, Eur. J. Org. Chem., 2008, 1655.
3
3
4
http://www.thalesnano.com/products/h-cube.
Conclusion
For selected recent examples see: (a) M. Baumann, I. R. Baxendale and
S. V. Ley, Synlett, 2010, 5, 749; (b) B. Clapham, N. S. Wilson, M. J.
Michmerhuizen, D. P. Blanchard, D. M. Dingle, T. A. Nemcek, J. Y.
Pan and D. R. Sauer, J. Comb. Chem., 2008, 10, 88; (c) H. H. Horvath,
G. Papp, C. Csajagi and F. Joo, Catal. Commun., 2007, 8, 442; (d) G.
Szoellosi, B. Herman, F. Fulop and M. Bartok, React. Kinet. Catal.
Lett., 2006, 88, 391; (e) V. Franckevicius, K. R. Knudsen, M. Ladlow,
D. A. Longbottom and S. V. Ley, Synlett, 2006, 6, 889; (f) R. V. Jones,
L. Godorhazy, N. Varga, D. Szalay, L. Urge and F. Darvas, J. Comb.
Chem., 2006, 8, 110.
For selected recent examples see: (a) X. Ye, M. D. Johnson, T. Diao,
M. H. Yates and S. S. Stahl, Green Chem., 2010, 12, 1180; (b) S. H u¨ bner,
U. Bentrup, U. Budde, K. Lovis, T. Dietrich, A. Freitag, L. K u¨ pper and
K. J a¨ hnisch, Org. Process Res. Dev., 2009, 13, 952; (c) B. N. Zope and
R. J. Davis, Top. Catal., 2009, 52, 269; (d) A. Lapkin, B. Bozkaya and
P. K. Plucinski, Ind. Eng. Chem. Res., 2006, 45, 2220.
In summary, a prototype tube-in-tube reactor in which it is possible
to load gas and heat simultaneously has been used for continuous-
flow alkoxycarbonylation reactions of aryl iodides. A range of aryl
iodides can be transformed to the corresponding esters in excellent
◦
conversion by reaction at 120 C using 0.5 mol% palladium acetate
as the catalyst with no additional ligand required. Small-scale
optimization and substrate screening runs were followed by scale-
up. Due to dispersion factors, while smaller-scale trails can be
performed at 1 M input reagent concentrations, scale-up required
operating at 0.5 M. The methodology using the heated tube-in-
tube reactor was found to be operationally far superior to a plug-
flow approach. No longer was it necessary to painstakingly opti-
mize bubble size and use a significant excess of carbon monoxide
gas. An additional benefit was that the significant build up of
palladium black at the point of exit through the back-pressure
regulator that occurred with the plug-flow approach due to excess
CO poisoning the catalyst was no longer an issue when using the
heated tube-in-tube reactor. Work is now underway to use the
reactor for other chemical transformations, including expanding
the substrate scope of the alkyoxycarbonylation methodology
to aryl bromides and chlorides by using a phosphine-ligated
palladium complex as the catalyst.
5
6
(a) K. Jahnisch, M. Baerns, V. Hessel, W. Ehrfeld, V. Haverkamp, H.
Lowe, C. Wille and A. Guber, J. Fluorine Chem., 2000, 105, 117; (b) C. B.
McPake, C. B. Murray and G. Sandford, Tetrahedron Lett., 2009, 50,
1
674.
7
8
9
A. Kumar, T. Chilongo, J. Dewulf, S. J. Ergas and H. Van Langenhove,
Bioresour. Technol., 2010, 101, 8955.
C. B. Kelly, C. Lee, M. A. Mercadante and N. E. Leadbeater, Org.
Process Res. Dev., 2011, 15, 717–720.
M. O’Brien, I. R. Baxendale and S. V. Ley, Org. Lett., 2010, 12, 1596.
0 A. Polyzos, M. O’Brien, T. P. Petersen, I. R. Baxendale and S. V. Ley,
Angew. Chem., Int. Ed., 2011, 50, 1190.
11 M. O’Brien, N. Taylor, A. Polyzos, I. R. Baxendale and S. V. Ley, Chem.
Sci., 2011, 2, 1250–1257.
1
1
2 (a) C. M. Kormos and N. E. Leadbeater, Org. Biomol. Chem., 2007,
, 65; (b) M. D. Bowman, J. R. Schmink, C. M. McGowan, C. M.
Kormos and N. E. Leadbeater, Org. Process Res. Dev., 2008, 12, 1078;
5
Acknowledgements
(
c) M. Iannelli, F. Bergamelli, C. M. Kormos, S. Paravisi and N. E.
Leadbeater, Org. Process Res. Dev., 2009, 13, 634.
3 http://www.vapourtec.co.uk/.
Vapourtec is thanked for equipment support. David Griffin and
Duncan Guthrie are particularly thanked for their input. Funding
from the National Science Foundation (CAREER award CHE-
1
1
4 Literature data for compounds prepared in this study – Table 2, entries
1–6: R. Shang, Y. Fu, J. B. Li, S. L. Zhang, Q. X. Guo and L. Liu,
J. Am. Chem. Soc., 2009, 131, 5738 Table 2, entry 8: Q. Liu, G. Li, J.
He, J. Liu, P. Li and A. Lei, Angew. Chem. Int. Ed. Engl, 2010, 49, 3371.
0847262) is acknowledged.
1
1
5 Table 2, entry 7 – Propyl-4-methylbenzoate: H NMR (400 MHz,
Notes and references
CDCl
3
) d (ppm) 1.03 (t, J = 7.51 Hz, 3 H) 1.79 (m, J = 7.17 Hz, 2
H) 2.40 (s, 3 H) 4.26 (t, J = 6.66 Hz, 2 H) 7.23 (d, J = 7.85 Hz, 1 H)
13
1
For an overview see: Chemical Reactions and Processes under Flow
Conditions, S. V. Luis and E. Garcia-Verdugo, ed., Royal Society of
Chemistry, Cambridge UK, 2010.
7.94 (d, J = 8.19 Hz, 2 H). C NMR (101 MHz, CDCl ) d (ppm) 10.78,
3
21.88, 22.39, 66.59, 128.06, 129.28, 129.81, 143.66, 167.01. MS (EI):
178 (M+, 6%), 136 (71%), 119 (100%), 91 (45%), 65 (15%), 39 (4%).
2
For recent reviews see: (a) C. Wiles and P. Watts, Chem. Commun.,
HRMS (ESI+), calcd for C11H O [M]+: 179.1072, found 179.1055.
FTIR (cm , neat, ATR) 3039 (w), 2965 (m), 2878 (w), 1713 (s), 1613
(m), 1461 (w), 1265 (vs), 1174 (m), 1104 (s), 748 (s).
14 2
-1
2
011, 47, 6512, DOI: 10.1039/c1cc00089f; (b) J. Wegner, S. Ceylan and
A. Kirschning, Chem. Commun., 2011, 47, 4583–4592; T. Razzaq and
6
578 | Org. Biomol. Chem., 2011, 9, 6575–6578
This journal is © The Royal Society of Chemistry 2011