ACKNOWLEDGMENTS. We thank Josh Vermaas for his assistance with the
simulation setup and Mark Allen and the staff at Diamond Light Source for
their support and contributions to X-ray crystallography. We also thank
Brenna Black and Bill Michener for their assistance with analytics. This
material is also based on work supported by (while C.M.P. is serving at) the
National Science Foundation (NSF). Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the NSF. Support for this work was
provided by the NSF (Grants MCB-1715176, M.M.M. and J.L.D.; CHE-1361104,
to K.N.H.; and CBET-1552355, to C.M.P.) and the Biotechnology and Bi-
ological Sciences Research Council (Grants BB/P011918/1 and BB/L001926/1,
to J.E.M.). This work was partially authored by the Alliance for Sustainable
Energy, LLC, the manager and operator of the National Renewable Energy
Laboratory for the US Department of Energy (DOE) (Contract DE-AC36-
08GO28308). B.C.K., A.W.M., L.B., G.P.S., M.F.C., C.W.J., and G.T.B. received
funding for the MD simulations and in vivo experiments from the US DOE,
Office of Energy Efficiency and Renewable Energy (EERE), Bioenergy Tech-
nologies Office. M.M.M. received funding support from the US DOE, Office
of Science, Office of Workforce Development for Teachers and Scientists,
Office of Science Graduate Student Research program, which is administered
by the Oak Ridge Institute for Science and Education for the DOE under
Contract DE-SC0014664. G.T.B. and J.E.M. received funding for the structural
biology efforts from The Center for Bioenergy Innovation, a US DOE Bioen-
ergy Research Center supported by the Office of Biological and Environmen-
tal Research in the DOE Office of Science. M.G.-B is the recipient of a Ramón
Areces Foundation postdoctoral fellowship. Computer time was provided by
Extreme Science and Engineering Discovery Environment, supported by NSF
Grant ACI-1548562 via allocation MCB-090159 to G.T.B. at the Pittsburgh
Supercomputing Center (Bridges) and the Texas Advanced Computing Center
(Stampede2), by the National Renewable Energy Laboratory Computa-
tional Sciences Center supported by the DOE Office of EERE under Con-
tract DE-AC36-08GO28308, and by the UCLA Institute for Digital Research
and Education. K.N.H. received financial support from the National Insti-
tute for General Medical Sciences (Grant GM-124480).
1. W. Boerjan, J. Ralph, M. Baucher, Lignin biosynthesis. Annu. Rev. Plant Biol. 54, 519–
546 (2003).
2. G. Fuchs, M. Boll, J. Heider, Microbial degradation of aromatic compounds—from one
strategy to four. Nat. Rev. Microbiol. 9, 803–816 (2011).
3. T. D. Bugg, M. Ahmad, E. M. Hardiman, R. Singh, The emerging role for bacteria in
lignin degradation and bio-product formation. Curr. Opin. Biotechnol. 22, 394–400
(2011).
4. D. Floudas et al., The Paleozoic origin of enzymatic lignin decomposition re-
constructed from 31 fungal genomes. Science 336, 1715–1719 (2012).
5. D. Salvachúa et al., Lignin depolymerization by fungal secretomes and a microbial
sink. Green Chem. 18, 6046–6062 (2016).
22. T. Yoshikata et al., Three-component O-demethylase system essential for catabolism
of a lignin-derived biphenyl compound in Sphingobium sp. strain SYK-6. Appl. Envi-
ron. Microbiol. 80, 7142–7153 (2014).
23. A. Harada et al., The crystal structure of a new O-demethylase from Sphingobium sp.
strain SYK-6. FEBS J. 284, 1855–1867 (2017).
24. A. C. Kohler, M. J. L. Mills, P. D. Adams, B. A. Simmons, K. L. Sale, Structure of aryl
O-demethylase offers molecular insight into a catalytic tyrosine-dependent mechanism.
Proc. Natl. Acad. Sci. U.S.A. 114, E3205–E3214 (2017).
25. S. G. Bell et al., The crystal structures of 4-methoxybenzoate bound CYP199A2 and
CYP199A4: Structural changes on substrate binding and the identification of an anion
binding site. Dalton Trans. 41, 8703–8714 (2012).
26. S. G. Bell et al., Investigation of the substrate range of CYP199A4: Modification of the
partition between hydroxylation and desaturation activities by substrate and protein
engineering. Chemistry 18, 16677–16688 (2012).
6. E. Masai, Y. Katayama, M. Fukuda, Genetic and biochemical investigations on bac-
terial catabolic pathways for lignin-derived aromatic compounds. Biosci. Biotechnol.
Biochem. 71, 1–15 (2007).
27. M. Tumen-Velasquez et al., Accelerating pathway evolution by increasing the gene
dosage of chromosomal segments. Proc. Natl. Acad. Sci. U.S.A. 115, 7105–7110 (2018).
28. S. J. B. Mallinson et al., A promiscuous cytochrome P450 aromatic O-demethylase for
lignin bioconversion. Nat. Commun. 9, 2487 (2018).
29. S. C. Farrow, P. J. Facchini, Dioxygenases catalyze O-demethylation and O,O-
demethylenation with widespread roles in benzylisoquinoline alkaloid metabolism
in opium poppy. J. Biol. Chem. 288, 28997–29012 (2013).
30. D. Salvachúa, E. M. Karp, C. T. Nimlos, D. R. Vardon, G. T. Beckham, Towards lignin
consolidated bioprocessing: Simultaneous lignin depolymerization and product
generation by bacteria. Green Chem. 17, 4951–4967 (2015).
31. S. M. Bölicke, W. Ternes, Isolation and identification of oxidation products of syringol
from brines and heated meat matrix. Meat Sci. 118, 108–116 (2016).
32. O. E. Adelakun, T. Kudanga, I. R. Green, M. le Roes-Hill, S. G. Burton, Enzymatic
modification of 2,6-dimethoxyphenol for the synthesis of dimers with high antioxi-
dant capacity. Process Biochem. 47, 1926–1932 (2012).
33. Y. Y. Wan, Y. M. Du, T. S. Miyakoshi, Enzymatic catalysis of 2,6-dimethoxyphenol by
laccases and products characterization in organic solutions. Sci. China B Chem. 51,
669–676 (2008).
34. Y.-T. Lee, R. F. Wilson, I. Rupniewski, D. B. Goodin, P450cam visits an open confor-
mation in the absence of substrate. Biochemistry 49, 3412–3419 (2010).
35. I. F. Sevrioukova, H. Li, H. Zhang, J. A. Peterson, T. L. Poulos, Structure of a cytochrome
P450-redox partner electron-transfer complex. Proc. Natl. Acad. Sci. U.S.A. 96, 1863–
1868 (1999).
36. D. C. Haines, D. R. Tomchick, M. Machius, J. A. Peterson, Pivotal role of water in the
mechanism of P450BM-3. Biochemistry 40, 13456–13465 (2001).
37. D. R. Vardon et al., Adipic acid production from lignin. Energy Environ. Sci. 8, 617–628
(2015).
7. G. T. Beckham, C. W. Johnson, E. M. Karp, D. Salvachúa, D. R. Vardon, Opportunities
and challenges in biological lignin valorization. Curr. Opin. Biotechnol. 42, 40–53
(2016).
8. J. G. Linger et al., Lignin valorization through integrated biological funneling and
chemical catalysis. Proc. Natl. Acad. Sci. U.S.A. 111, 12013–12018 (2014).
9. T. D. Bugg, R. Rahmanpour, Enzymatic conversion of lignin into renewable chemicals.
Curr. Opin. Chem. Biol. 29, 10–17 (2015).
10. O. Y. Abdelaziz et al., Biological valorization of low molecular weight lignin. Bio-
technol. Adv. 34, 1318–1346 (2016).
11. R. Rinaldi et al., Paving the way for lignin valorisation: Recent advances in bio-
engineering, biorefining and catalysis. Angew. Chem. Int. Ed. Engl. 55, 8164–8215
(2016).
12. W. Schutyser et al., Chemicals from lignin: An interplay of lignocellulose fraction-
ation, depolymerisation, and upgrading. Chem. Soc. Rev. 47, 852–908 (2018).
13. A. J. Ragauskas et al., Lignin valorization: Improving lignin processing in the bio-
refinery. Science 344, 1246843 (2014).
14. Z. Sun, B. Fridrich, A. de Santi, S. Elangovan, K. Barta, Bright side of lignin de-
polymerization: Toward new platform chemicals. Chem. Rev. 118, 614–678 (2018).
15. A. Dardas et al., The demethylation of guaiacol by a new bacterial cytochrome P-450.
Arch. Biochem. Biophys. 236, 585–592 (1985).
16. U. Karlson et al., Two independently regulated cytochromes P-450 in a Rhodococcus
rhodochrous strain that degrades 2-ethoxyphenol and 4-methoxybenzoate. J. Bacteriol.
175, 1467–1474 (1993).
17. L. D. Eltis, U. Karlson, K.N. Timmis, Purification and characterization of cytochrome
P450RR1 from Rhodococcus rhodochrous. Eur. J. Biochem. 213, 211–216 (1993).
18. A. Segura, P. V. Bünz, D. A. D’Argenio, L. N. Ornston, Genetic analysis of a chromo-
somal region containing vanA and vanB, genes required for conversion of either
ferulate or vanillate to protocatechuate in Acinetobacter. J. Bacteriol. 181, 3494–3504
(1999).
38. J. Nogales et al., Unravelling the gallic acid degradation pathway in bacteria: The gal
cluster from Pseudomonas putida. Mol. Microbiol. 79, 359–374 (2011).
39. Y. Saeki, M. Nozaki, S. Senoh, Cleavage of pyrogallol by non-heme iron-containing
dioxygenases. J. Biol. Chem. 255, 8465–8471 (1980).
40. F. P. Guengerich, M. V. Martin, C. D. Sohl, Q. Cheng, Measurement of cytochrome
P450 and NADPH-cytochrome P450 reductase. Nat. Protoc. 4, 1245–1251 (2009).
41. S. G. Bell, A. B. Tan, E. O. Johnson, L. L. Wong, Selective oxidative demethylation of
veratric acid to vanillic acid by CYP199A4 from Rhodopseudomonas palustris HaA2.
Mol. Biosyst. 6, 206–214 (2010).
19. B. Morawski, A. Segura, L. N. Ornston, Substrate range and genetic analysis of Aci-
netobacter vanillate demethylase. J. Bacteriol. 182, 1383–1389 (2000).
20. E. Masai et al., A novel tetrahydrofolate-dependent O-demethylase gene is essential
for growth of Sphingomonas paucimobilis SYK-6 with syringate. J. Bacteriol. 186,
2757–2765 (2004).
21. T. Abe, E. Masai, K. Miyauchi, Y. Katayama, M. Fukuda, A tetrahydrofolate-dependent
O-demethylase, LigM, is crucial for catabolism of vanillate and syringate in Sphingo-
monas paucimobilis SYK-6. J. Bacteriol. 187, 2030–2037 (2005).
42. J. Chrastil, J. T. Wilson, A sensitive colorimeter method for formaldehyde. Anal. Bio-
chem. 63, 202–207 (1975).
Machovina et al.
PNAS Latest Articles
|
7 of 7