Aza-Cope Rearrangement−Mannich Cyclizations
A R T I C L E S
laboratories: Lovell and co-workers used X-ray crystallography
to determine the structure of the hydrochloride and hydroiodide
salts of gelsemine,6 whereas Conroy and Chakrabarti derived
the same structure from a combination of biosynthetic rationale
(attributed to Woodward) and an early application of 1H NMR
spectroscopy for structure elucidation.7,8 Gelsemine’s presumed
biosynthesis from secologanin suggests the absolute configu-
ration depicted in Figure 1, a supposition verified in 2000 by
Fukuyama’s enantioselective total synthesis.9
Since these early reports, many structurally related Gelsemium
alkaloids have been reported (Figure 1).10-15 Among these,
gelsemicine (5) is the most toxic and appears to be largely
responsible for the CNS stimulant activity that is characteristic
of the Gelsemium extracts.12 Koumine (10), which has enjoyed
a long history of use in traditional Chinese medicine, is the most
abundant alkaloid found in G. elegans.16 Gelsemine (1),
gelsevirine (2), gelsedine (6), gelsenicine (9), gelsemine N-oxide,
19-(S)-hydroxydihydrogelsevirine, and 19-(R)-hydroxydihydro-
gelsevirine (11) are among the numerous alkaloids isolated from
G. elegans.17 The least studied species is G. rankinii, from which
rankinidine (14), 21-oxogelsevirine (4), 19-(R)-acetoxydihy-
drogelsevirine (12), and 19-(R)-hydroxydihydrogelsemine (13)
have been isolated.17a,18
Figure 2. Initial retrosynthetic analysis.
the spirooxindole unit of pentacyclic intermediate 15 could be
formed by cyclization of an appropriately functionalized R,â-
unsaturated amide such as 16. At the outset, we entertained the
(20) For model studies and syntheses of fragments of gelsemine, see: (a) Autrey,
R. L.; Tahk, F. C. Tetrahedron 1967, 23, 901-917. (b) Autrey, R. L.;
Tahk, F. C. Tetrahedron 1968, 24, 3337-3345. (c) Johnson, R. S.; Lovett,
T. O.; Stevens, T. S. J. Chem. Soc. C 1970, 6, 796-800. (d) Fleming, I.;
Michael, J. P. J. Chem. Soc., Perkin Trans. 1 1981, 1549-1556. (e)
Fleming, I.; Loreto, M. A.; Michael, J. P.; Wallace, I. H. M. Tetrahedron
Lett. 1982, 23, 2053-2056. (f) Fleming, I.; Loreto, M. A.; Wallace, I. H.
M.; Michael, J. P. J. Chem. Soc., Perkin Trans. 1 1986, 349-359. (g) Stork,
G.; Krafft, M. E.; Biller, S. A. Tetrahedron Lett. 1987, 28, 1035-1038.
(h) Vijn, R. J.; Hiemstra, H.; Kok, J. J.; Knotter, M.; Speckamp, W. N.
Tetrahedron 1987, 43, 5019-5030. (i) Clarke, C.; Fleming, I.; Fortunak,
J. M. D.; Gallagher, P. T.; Honan, M. C.; Mann, A.; Nubling, C. O.;
Raithby, P. R.; Wolff, J. J. Tetrahedron 1988, 44, 3931-3934. (j) Hiemstra,
H.; Vijn, R. J.; Speckamp, W. N. J. Org. Chem. 1988, 53, 3882-3884. (k)
Choi, J.-K.; Ha, D.-C.; Hart, D. J.; Lee, C.-S.; Ramesh, S.; Wu, S. J. Org.
Chem. 1989, 54, 279-290. (l) Fleming, I.; Moses, R. C.; Tercel, M.; Ziv,
J. J. Chem. Soc., Perkin Trans. 1 1991, 617-626. (m) Hart, D. J.; Wu, S.
C. Tetrahedron Lett. 1991, 32, 4099-4102. (n) Koot, W.-J.; Hiemstra, H.;
Speckamp, W. N. J. Org. Chem. 1992, 57, 1059-1061. (o) Hart, D. J.;
Wu, S. C. Heterocycles 1993, 35, 135-138. (p) Takayama, H.; Seki, N.;
Kitajima, M.; Aimi, N.; Sakai, S.-I. Nat. Prod. Lett. 1993, 2, 271-276.
(q) Johnson, A. P.; Luke, R. W. A.; Steele, R. W.; Boa, A. N. J. Chem.
Soc., Perkin Trans. 1 1996, 883-893. (r) Ng, F.; Chiu, P.; Danishefsky,
S. J. Tetrahedron Lett. 1998, 39, 767-770. (s) Sung, M. J.; Lee, C.-W.;
Cha, J. K. Synlett 1999, 561-562. (t) Avent, A. G.; Byrne, P. W.; Penkett,
C. S. Org. Lett. 1999, 1, 2073-2075. (u) Dijkink, J.; Cintrat, J.-C.;
Speckamp, W. N.; Hiemstra, H. Tetrahedron Lett. 1999, 40, 5919-5922.
(v) Pearson, A. J.; Wang, X. J. Am. Chem. Soc. 2003, 125, 13326-13327.
For total syntheses of (+)-gelsedine, see: (w) Beyersbergen van Hene-
gouwen, W. G.; Fieseler, R. M.; Rutjes, F. P. J. T.; Hiemstra, H. Angew.
Chem., Int. Ed. Engl. 1999, 38, 2214-2217. (x) Beyersbergen van
Henegouwen, W. G.; Fieseler, R. M.; Rutjes, F. P. J. T.; Hiemstra, H. J.
Org. Chem. 2000, 65, 8317-8325. For total syntheses of (+)-koumine,
see: (y) Magnus, P.; Mugrage, B.; DeLuca, M.; Cain, G. A. J. Am. Chem.
Soc. 1989, 111, 786-789. (z) Magnus, P.; Mugrage, B.; DeLuca, M. R.;
Cain, G. A. J. Am. Chem. Soc. 1990, 112, 5220-5230. For formal total
syntheses of (-)-koumine, see: (aa) Bailey, P. D.; McLay, N. R.
Tetrahedron Lett. 1991, 32, 3895-3898. (bb) Bailey, P. D.; McLay, N. R.
J. Chem. Soc., Perkin Trans. 1 1993, 441-449.
The six diverse rings of gelsemine (1) are assembled into a
compact cage. The unusual and densely functionalized nature
of this hexacyclic structure provoked intense efforts to synthesize
gelsemine.19 These studies stimulated the development of many
innovative synthetic methods,20,21 culminating in total syntheses
of (()-gelsemine by the groups of Johnson,22 Speckamp,23
Hart,24 Fukuyama,25 Overman,26 and Danishefsky27 and of (+)-
gelsemine by Fukuyama and co-workers.9
Initial Synthesis Planning
The retrosynthetic analysis that propelled our efforts to
synthesize gelsemine is outlined in Figure 2. We envisaged
forming the hydropyran ring last, for example, by intramolecular
etherification of an intermediate such as 15. It was hoped that
(6) Lovell, F. M.; Pepinsky, R.; Wilson, A. J. C. Tetrahedron Lett. 1959, 1
(4), 1-5.
(7) Conroy, H.; Chakrabarti, J. K. Tetrahedron Lett. 1959, 1 (4), 6-13.
(8) The 1H and 13C NMR spectra of gelsemine have been reinvestigated; as a
result, some of the original assignments have been revised. See: (a) Schun,
Y.; Cordell, G. A. J. Nat. Prod. 1985, 48, 969-971. (b) Wenkert, E.; Chang,
C.-J.; Clouse, A. O.; Cochran, D. W. J. Chem. Soc., Chem. Commun. 1970,
961-962.
(9) Yokoshima, S.; Tokuyama, H.; Fukuyama, T. Angew. Chem., Int. Ed. 2000,
39, 4073-4075.
(10) (a) Schwarz, H.; Marion, L. J. Am. Chem. Soc. 1953, 75, 4372-4372. (b)
Wenkert, E.; Chang, C.-J.; Cochran, D. W.; Pellicciari, R. Experientia 1972,
28, 377-379.
(21) For early studies from our laboratories, see: (a) Abelman, M. M.; Oh, T.;
Overman, L. E. J. Org. Chem. 1987, 52, 4130-4133. (b) Earley, W. G.;
Jacobsen, E. J.; Meier, G. P.; Oh, T.; Overman, L. E. Tetrahedron Lett.
1988, 29, 3781-3784. (c) Earley, W. G.; Oh, T.; Overman, L. E.
Tetrahedron Lett. 1988, 29, 3785-3788. (d) Madin, A.; Overman, L. E.
Tetrahedron Lett. 1992, 33, 4859-4862. (e) Overman, L. E.; Sharp, M. J.
J. Org. Chem. 1992, 57, 1035-1038.
(22) (a) Sheikh, Z.; Steel, R.; Tasker, A. S.; Johnson, A. P. J. Chem. Soc., Chem.
Commun. 1994, 763-764. (b) Dutton, J. K.; Steel, R. W.; Tasker, A. S.;
Popsavin, V.; Johnson, A. P. J. Chem. Soc., Chem. Commun. 1994, 765-
766.
(11) Nikiforov, A.; Latzel, J.; Varmuza, K.; Wichtl, M. Monatsh. Chem. 1974,
105, 1292-1298.
(12) (a) Schwarz, H.; Marion, L. Can. J. Chem. 1953, 31, 958-975. (b)
Przybylska, M.; Marion, L. Can. J. Chem. 1961, 39, 2124-2127.
(13) Wenkert, E.; Orr, J. C.; Garratt, S.; Hansen, J. H.; Wickberg, B.; Leicht,
C. L. J. Org. Chem. 1962, 27, 4123-4126.
(14) Wichtl, M.; Nikiforov, A.; Sponer, S.; Jentzsch, K. Monatsh. Chem. 1973,
104, 87-98.
(15) Schun, Y.; Cordell, G. A. J. Nat. Prod. 1985, 48, 788-791.
(16) (a) Chou, T. Q.; Pak, C.; Hou, H. C.; Liu, J. C. Chin. J. Physiol. 1961, 5,
345-352. (b) Liu, C.-T.; Wang, Q.-W.; Wang, C.-H. J. Am. Chem. Soc.
1981, 103, 4634-4635.
(23) (a) Newcombe, N. J.; Ya, F.; Vijn, R. J.; Hiemstra, H.; Speckamp, W. N.
J. Chem. Soc., Chem. Commun. 1994, 767-768. (b) Speckamp, W. N.;
Newcombe, N. J.; Hiemstra, H.; Ya, F.; Vijn, R. J.; Koot, W.-J. Pure Appl.
Chem. 1994, 66, 2163-2166.
(17) (a) Schun, Y.; Cordell, G. A.; Garland, M. J. Nat. Prod. 1986, 49, 483-
487. (b) Ponglux, D.; Wongseripipatana, S.; Subhadhirasakul, S.; Takayama,
H.; Yokota, M.; Ogata, K.; Phisalaphong, C.; Aimi, N.; Sakai, S.-I.
Tetrahedron 1988, 44, 5075-5094. (c) Lin, L.-Z.; Schun, Y.; Cordell, G.
A.; Ni, C.-Z.; Clardy, J. Phytochemistry 1991, 30, 679-683.
(18) Schun, Y.; Cordell, G. A. J. Nat. Prod. 1986, 49, 806-808.
(19) For a review of synthetic work in this area, see: Lin, H.; Danishefsky, S.
J. Angew. Chem., Int. Ed. 2003, 42, 36-51.
(24) (a) Kuzmich, D.; Wu, S. C.; Ha, D.-C.; Lee, C.-S.; Ramesh, S.; Atarashi,
S.; Choi, J.-K.; Hart, D. J. J. Am. Chem. Soc. 1994, 116, 6943-6944. (b)
Atarashi, S.; Choi, J.-K.; Ha, D.-C.; Hart, D. J.; Kuzmich, D.; Lee, C.-S.;
Ramesh, S.; Wu, S. C. J. Am. Chem. Soc. 1997, 119, 6226-6241.
(25) (a) Fukuyama, T.; Liu, G. J. Am. Chem. Soc. 1996, 118, 7426-7427. (b)
Fukuyama, T.; Liu, G. Pure Appl. Chem. 1997, 69, 501-505.
(26) Madin, A.; O’Donnell, C. J.; Oh, T.; Old, D. W.; Overman, L. E.; Sharp,
M. J. Angew. Chem., Int. Ed. 1999, 38, 2934-2936.
9
J. AM. CHEM. SOC. VOL. 127, NO. 51, 2005 18047