ARTICLE IN PRESS
S. Manna, S.K. De / Journal of Magnetism and Magnetic Materials 322 (2010) 2749–2753
2753
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
H=1000 Oe
90
80
70
60
FC
50
40
30
20
10
Cu0.98Fe0.02
Cu0.95Fe0.05
Cu0.90Fe0.10
O
O
O
ZFC
CuO
300
0
50
100
150
200
250
300
350
0
50
100
150
200
250
T (K)
T (K)
Fig. 7. (Left) Field cool (FC) and zero field cool (ZFC) susceptibility of pure CuO nanorods. (Right) Field cooled susceptibility for all doped samples.
(1 1 0) direction may strengthen the ferromagnetic coupling in
(x,y) plane. The mixed valency of Fe ions gives rise to double
exchange interaction which favors the ferromagnetic spin order.
[6] S.R. Shinde, S.B. Ogale, J.S. Higgins, H. Zheng, A.J. Millis, V.N. Kulkarni,
R. Ramesh, R.L. Greene, T. Venkatesan, Phys. Rev. Lett. 92 (2004) 166601.
[7] K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett. 79 (2001) 988.
[8] K.R. Kittelstved, N.S. Norberg, D.R. Gamelin, Phys. Rev. Lett. 94 (2005)
147209.
[9] M.S. Seehra, Z. Feng, R. Gopalakrishnan, J. Phys. C 21 (1988) L1051.
[10] X.G. Zheng, Y. Kodama, K. Saito, E. Tanaka, Y. Tomokiyo, H. Yamada, C.N. Xu,
Phys. Rev. B 69 (2004) 094510.
4. Conclusion
[11] X.G. Zheng, T. Mori, K. Nishiyama, W. Higemoto, C.N. Xu, Solid State Commun.
132 (2004) 493.
[12] A. Punnoose, H. Magnone, J. Bonevich, M.S. Seehra, Phys. Rev. B 64 (2001)
174420.
CuO nanorods with high aspect ratio 15–20 have been
successfully prepared by template free hydrothermal method.
Analysis of XPS and resistivity data suggest that Fe ions in CuO
nanorods exist in mixed valence state. Room temperature
ferromagnetism in CuO nanorods is significantly enhanced by
the substitution of Cu by Fe ion. Shape anisotropy, mixed valency
of Fe ions and non-Jahn–Teller property of Fe ions play important
roles to produce ferromagnetism with high Curie temperature in
Fe doped CuO nanorods.
[13] A. Punnoose, M.S. Seehra, Solid State Commun. 128 (2003) 299.
[14] K.H. Gao, Z.Q. Li, T. Du, E.Y. Jiang, Y.X. Li, Phys. Rev. B 75 (2007) 174444.
[15] H.M. Xiao, L.P. Zhu, X.M. Liu, S.Y. Fu, Solid State Commun. 141 (2007) 431.
[16] X.Y. Cui, B. Delley, A.J. Freeman, C. Stampfl, Phys. Rev. Lett. 97 (2006)
016402.
[17] Z.M. Liao, Y. Li, J. Xu, J. Zhang, K. Xia, D. Yu, Nano Lett. 6 (2006) 1087.
[19] Y. Cudennec, A. Lecerf, Solid State Sci. 5 (2003) 1471.
[20] J. Ghijsen, L.H. Tjeng, J. Van Elp, H. Eskes, J. Westerink, G.A. Sawatzky,
M.T. Czyzyk, Phys. Rev. B 38 (1988) 11322.
[21] D. Castro, V. Ciampi, Surf. Sci. 331 (1995) 294.
References
[22] M. Muhler, R. Schlogl, G. Ertl, J. Catal. 138 (1992) 413.
[23] N.F. Mott, E. Devis, Electronic Processing Non Crystalline Materials, second
ed., Clarendon, Oxford, 1979.
[1] H. Ohno, Science 281 (1998) 951.
[2] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287 (2000) 1019.
[3] A.H. Macdonald, P. Schiffer, N. Samarth, Nat. Mater. 4 (2005) 195.
[4] K. Ando, Science 312 (2006) 1883.
[5] W.K. Park, R.J. Ortega-Hertogs, J.S. Moodera, A. Punnoose, M.S. Seehra, J. Appl.
Phys. 91 (2002) 8093.
[24] T.V. Chandrasekhar, V.C. Sahni, J. Phys. Condens. Matter 6 (1994) L423.
[25] F. Walz, J. Phys. Condens. Matter 14 (2002) R285.
[26] R.A. Borzi, S.J. Stewart, G. Punte, R.C. Mercader, G.A. Curutchet, R.D. Zysler,
M. Tovar, J. Appl. Phys. 87 (2000) 4870.
[27] A. Filippetti, V. Fiorentini, Phys. Rev. Lett. 95 (2005) 086405.