Paper
Organic & Biomolecular Chemistry
ethoxycarbonyl group also afford the corresponding pyrrole 2q 10 T. Watanabe, Y. Mutoh and S. Saito, J. Am. Chem. Soc.,
in high yield. The reaction of 1r with 3,4-dimethoxyphenyl
group proceeded cleanly, and 2r was obtained in 86% yield.
2017, 139, 7749.
11 T. Watanabe, H. Abe, Y. Mutoh and S. Saito, Chem. – Eur. J.,
2018, 24, 11545.
12 For recent reviews on catalytic processes that involve vinyli-
dene intermediates, see: (a) J. A. Varela, C. González-
Rodríguez and C. Saá, Top. Organomet. Chem., 2014, 237;
(b) S. W. Roh, K. Choi and C. Lee, Chem. Rev., 2019, 119,
4293.
Conclusions
We have developed a synthetic method for various 1-arylchro-
meno[3,4-b]pyrrol-4(3H)-ones by ruthenium-catalyzed cyclo-
isomerization of 3-amino-4-ethynyl-2H-chromen-2-ones via 1,2- 13 For stoichiometric internal alkyne-to-vinylidene rearrange-
carbon migration. The formal total synthesis of Ningalin B
and Lamellarin H was achieved by employing this reaction.
Moreover, a general method for the synthesis of uncommon
γ-butyrolactone-fused pyrroles was established. Our studies
will contribute to the development of a new method for the
synthesis of heavily substituted pyrrole derivatives.
ments, see: (a) P. J. King, S. A. R. Knox, M. S. Legge,
A. G. Orpen, J. N. Wilkinson and E. A. Hill, J. Chem. Soc.,
Dalton Trans., 2000, 1547; (b) M. J. Shaw, S. W. Bryant and
N. Rath, Eur. J. Inorg. Chem., 2007, 3943; (c) Y. Ikeda,
T. Yamaguchi, K. Kanao, K. Kimura, S. Kamimura,
Y. Mutoh, Y. Tanabe and Y. Ishii, J. Am. Chem. Soc., 2008,
130, 16856; (d) Y. Mutoh, Y. Ikeda, Y. Kimura and Y. Ishii,
Chem. Lett., 2009, 38, 534; (e) E. Bustelo, I. de los Rios,
M. C. Puerta and P. Valerga, Organometallics, 2010, 29,
1740; (f) Y. Mutoh, K. Imai, Y. Kimura, Y. Ikeda and
Y. Ishii, Organometallics, 2011, 30, 204; (g) V. K. Singh,
E. Bustelo, I. de los Ríos, I. Macías-Arce, M. C. Puerta,
P. Valerga, M. A. Ortuño, G. Ujaque and A. Lledós,
Organometallics, 2011, 30, 4014; (h) Y. Mutoh, Y. Kimura,
Y. Ikeda, N. Tsuchida, K. Takano and Y. Ishii,
Organometallics, 2012, 31, 5150; (i) M. Otsuka, N. Tsuchida,
Y. Ikeda, Y. Kimura, Y. Mutoh, Y. Ishii and K. Takano,
J. Am. Chem. Soc., 2012, 134, 17746; ( j) Y. Ikeda, Y. Mutoh,
K. Imai, N. Tsuchida, K. Takano and Y. Ishii,
Organometallics, 2013, 32, 4353; (k) F. E. Fernández,
M. C. Puerta and P. Valerga, Inorg. Chem., 2013, 52, 6502;
(l) M. Otsuka, N. Tsuchida, Y. Ikeda, N. Lambert,
R. Nakamura, Y. Mutoh, Y. Ishii and K. Takano,
Organometallics, 2015, 34, 3934; (m) Y. Ikeda, S. Kodama,
N. Tsuchida and Y. Ishii, Dalton Trans., 2015, 44, 17448;
(n) T. Kuwabara, S. Takamori, S. Kishi, T. Watanabe,
Y. Ikeda, S. Kodama, Y. Minami, T. Hiyama and Y. Ishii,
Synlett, 2018, 29, 727; (o) T. Kuwabara, K. Sakajiri,
Y. Oyama, S. Kodama and Y. Ishii, Organometallics, 2019,
38, 1560.
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
This research was supported in part by JSPS KAKENHI Grant
Number JP19J14232 (T. W.), as well as Taisho Pharmaceutical
Co., Ltd. Award in Synthetic Organic Chemistry, Japan (Y. M.),
the JGC-S Scholarship Foundation (Y. M.), and the Promotion
Expenses for Mid-term Research Strategic Plan by Tokyo
University of Science.
Notes and references
1 H. Fan, J. Peng, M. T. Hamann and J.-F. Hu, Chem. Rev.,
2008, 108, 264.
2 D. L. Boger, D. R. Soenen, C. W. Boyce, M. P. Hendrick and
Q. Jin, J. Org. Chem., 2000, 65, 2479.
3 C. P. Ridley, M. V. R. Reddy, G. Rocha, F. D. Bushman and
D. J. Faulkner, Bioorg. Med. Chem., 2002, 10, 3285.
4 D. Pla, A. Marchal, C. A. Olsen, A. Francesch, C. Cuevas,
F. Albericio and M. Álvarez, J. Med. Chem., 2006, 49, 3257.
5 For reviews, see: (a) T. Fukuda, F. Ishibashim and M. Iwao,
Heterocycles, 2011, 83, 491; (b) D. Imbri, J. Tauber and
T. Opatz, Mar. Drugs, 2014, 12, 6142.
14 For selected examples, see: (a) D. Pflästerer,
P. Dolbundalchok, S. Rafique, M. Rudolph, F. Rominger
and A. S. K. Hashmi, Adv. Synth. Catal., 2013, 355, 1383;
(b) H. Jin, L. Huang, J. Xie, M. Rudolph, F. Rominger and
A. S. K. Hashmi, Angew. Chem., Int. Ed., 2016, 55, 794;
(c) X. Tian, L. Song, M. Rudolph, F. Rominger and
A. S. K. Hashmi, Org. Lett., 2019, 21, 4327.
6 (a) L. Chen and M.-H. Xu, Adv. Synth. Catal., 2009, 351,
2005; (b) K. C. Mujumdar, N. De and B. Roy, Synthesis, 15 The use of distilled chlorobenzene as the solvent is impor-
2010, 4207; (c) Z. Wang, X. Xing, L. Xue, F. Gao and
L. Fang, Org. Biomol. Chem., 2013, 11, 7334.
7 C.-K. Wu, Z. Weng and D.-Y. Yang, Org. Lett., 2019, 13,
5225.
tant to obtain reproducible results. We did not use silver
salts in place of NaBArF in this study, since silver salts
4
were less effective in a closely related reaction which
involves alkyne-to-vinylidene rearrangement. See, ref. 13d.
8 R. Mei, S.-K. Zhang and L. Ackermann, Synlett, 2017, 28, 16 It has been reported that the rate of the 1,2-carbon
1715.
migration decreases in the reaction of an electron-deficient
aromatic alkyne or an aliphatic alkyne. See, ref. 13d and f.
17 The importance of dppbz ligand is unclear at this stage.
9 K. B. Manjappa, J.-M. Lin and D.-Y. Yang, J. Org. Chem.,
2017, 82, 7648.
84 | Org. Biomol. Chem., 2020, 18, 81–85
This journal is © The Royal Society of Chemistry 2020