10.1002/ejoc.202001120
European Journal of Organic Chemistry
COMMUNICATION
[3]
[4]
a) F. Naso, F. Babudri, G. M. Farinola, Pure Appl. Chem. 1999, 71,
1485-1492; b) G. Albano, M. Lissia, G. Pescitelli, L. A. Aronica, L. Di
Bari, Mater. Chem. Front. 2017, 1, 2047-2056; c) G. Albano, F.
Salerno, L. Portus, W. Porzio, L. A. Aronica, L. Di Bari,
ChemNanoMat 2018, 4, 1059-1070; d) A. Punzi, F. Babudri, G. M.
Farinola, Eur. J. Org. Chem. 2020, 2020, 3526-3541.
a) J. Dupont, C. S. Consorti, J. Spencer, Chem. Rev. 2005, 105,
2527-2572; b) R. Martin, S. L. Buchwald, Acc. Chem. Res. 2008, 41,
1461-1473; c) R. J. Lundgren, M. Stradiotto, Chem. Eur. J. 2012, 18,
9758-9769.
Finally, to shed light on the catalytic mechanism of Pd/SF, Maitlis
hot filtration test[28] was performed. Two Suzuki-Miyaura reactions
between p-iodoanisole (1a) and phenylboronic acid (2a) were
carried out under the optimized conditions (Table 1, entry 14) and
stopped after 10 minutes. For one of them, 75% yield was found.
For the other, the hot mixture was filtered to remove Pd/SF, and
the resulting clear solution was stirred again at 75 °C for the
remaining 50 minutes, and the yield was found again 75%. These
results seem to exclude release of palladium into solution during
reaction and suggest, according to the previous literature,[29] an
heterogeneous mechanism.
In conclusion, we have developed a new protocol for the
preparation of Pd/SF catalyst, which was characterized by XPS
and SEM analysis and then tested in the Suzuki-Miyaura coupling.
Compared to all the other biopolymer-supported palladium
catalysts reported to date, Pd/SF was found more active and
highly reusable. Our protocol represents a fast, scalable, versatile
and cheap access to biaryl compounds. The potential in organic
synthesis of this method appears interesting, and further
investigations on the substrate scope extension (i.e., aryl
chlorides) and application in the synthesis of atropisomeric
compounds are currently ongoing in our laboratories.
[5] a) Z. Chen, Z.-M. Cui, F. Niu, L. Jiang, W.-G. Song, Chem. Commun.
2010, 46, 6524-6526; b) P. Destito, A. Sousa-Castillo, J. R. Couceiro,
F. López, M. A. Correa-Duarte, J. L. Mascareñas, Chem. Sci. 2019,
10, 2598-2603.
[6]
a) K. Köhler, R. G. Heidenreich, S. S. Soomro, S. S. Pröckl, Adv.
Synth. Catal. 2008, 350, 2930-2936; b) G. Albano, C. Evangelisti, L.
A. Aronica, ChemistrySelect 2017, 2, 384-388; c) M. Massaro, C. G.
Colletti, G. Buscemi, S. Cataldo, S. Guernelli, G. Lazzara, L. F. Liotta,
F. Parisi, A. Pettignano, S. Riela, New J. Chem. 2018, 42, 13938-
13947; d) G. Albano, S. Interlandi, C. Evangelisti, L. A. Aronica,
Catal. Lett. 2020, 150, 652-659.
a) R. Franzén, Y. Xu, Can. J. Chem. 2005, 83, 266-272; b) B. H.
Lipshutz, A. R. Abela, Org. Lett. 2008, 10, 5329-5332; c) B. H.
Lipshutz, T. B. Petersen, A. R. Abela, Org. Lett. 2008, 10, 1333-
1336; d) B. Schmidt, M. Riemer, M. Karras, J. Org. Chem. 2013, 78,
8680-8688; e) B. Schmidt, M. Riemer, J. Org. Chem. 2014, 79,
4104-4118; f) S. Paul, M. M. Islam, S. M. Islam, RSC Adv. 2015, 5,
42193-42221.
[7]
[8]
[9]
a) N. T. S. Phan, M. Van Der Sluys, C. W. Jones, Adv. Synth. Catal.
2006, 348, 609-679; b) P. P. Mpungose, Z. P. Vundla, G. E. M.
Maguire, H. B. Friedrich, Molecules 2018, 23, 1676.
a) D. Baruah, R. N. Das, S. Hazarika, D. Konwar, Catal. Commun.
2015, 72, 73-80; b) S. Jadhav, A. Jagdale, S. Kamble, A. Kumbhar,
R. Salunkhe, RSC Adv. 2016, 6, 3406-3420; c) Z. Xiang, Y. Chen, Q.
Liu, F. Lu, Green Chem. 2018, 20, 1085-1094.
[10] a) A. Naghipour, A. Fakhri, Catal. Commun. 2016, 73, 39-45; b) H.
Veisi, M. Ghadermazi, A. Naderi, Appl. Organomet. Chem. 2016, 30,
341-345; c) T. Baran, N. Yılmaz Baran, A. Menteş, Appl. Organomet.
Chem. 2018, 32, e4075.
[11] a) A. Primo, M. Liebel, F. Quignard, Chem. Mater. 2009, 21, 621-
627; b) A. Wolfson, S. Biton, O. Levy-Ontman, RSC Adv. 2018, 8,
37939-37948.
[12] H.-c. Ma, W. Cao, Z.-k. Bao, Z.-Q. Lei, Catal. Sci. Technol. 2012, 2,
2291-2296.
[13] a) B. Zuo, L. Dai, Z. Wu, J. Mater. Sci. 2006, 41, 3357-3361; b) B. D.
Lawrence, F. Omenetto, K. Chui, D. L. Kaplan, J. Mater. Sci. 2008,
43, 6967-6985; c) H. Tao, D. L. Kaplan, F. G. Omenetto, Adv. Mater.
2012, 24, 2824-2837.
[14] a) Y. Takahashi, M. Gehoh, K. Yuzuriha, Int. J. Biol. Macromol. 1999,
24, 127-138; b) C.-Z. Zhou, F. Confalonieri, N. Medina, Y. Zivanovic,
C. Esnault, T. Yang, M. Jacquet, J. Janin, M. Duguet, R. Perasso, Z.-
G. Li, Nucleic Acids Res. 2000, 28, 2413-2419; c) P. Cebe, B. P.
Partlow, D. L. Kaplan, A. Wurm, E. Zhuravlev, C. Schick, Acta
Biomater. 2017, 55, 323-332.
[15] a) T. Asakura, T. Ohata, S. Kametani, K. Okushita, K. Yazawa, Y.
Nishiyama, K. Nishimura, A. Aoki, F. Suzuki, H. Kaji, A. S. Ulrich, M.
P. Williamson, Macromolecules 2015, 48, 28-36; b) C. Guo, J. Zhang,
J. S. Jordan, X. Wang, R. W. Henning, J. L. Yarger,
Biomacromolecules 2018, 19, 906-917.
Figure 2. Recycling tests of Pd/SF promoted Suzuki-Miyaura coupling,
performed under the optimized conditions (0.11 mmol of 1a, 0.16 mmol of 2a,
0.16 mmol of K2CO3, 0.38 mol% of Pd/SF, 2.5 mL of H2O/EtOH (4:1), for 1 h
under atmospheric conditions). Yields of 3aa product were estimated by GC-MS
analysis on the crude product.
Acknowledgements
Dr. Antonio Palermo and Dr. Adriano Boghetich are gratefully
acknowledged for NMR and SEM-EDS analyses, respectively.
[16] a) D. N. Rockwood, R. C. Preda, T. Yücel, X. Wang, M. L. Lovett, D.
L. Kaplan, Nat. Protoc. 2011, 6, 1612-1631; b) G. Rizzo, M. Lo Presti,
C. Giannini, T. Sibillano, A. Milella, G. Matzeu, R. Musio, F. G.
Omenetto, G. M. Farinola, Macromol. Chem. Phys. 2020, 221,
2000066.
[17] a) F. G. Omenetto, D. L. Kaplan, Nat. Photonics 2008, 2, 641-643; b)
E. M. Pritchard, P. B. Dennis, F. Omenetto, R. R. Naik, D. L. Kaplan,
Biopolymers 2012, 97, 479-498.
Keywords: biopolymers • cross-coupling • palladium catalyst •
silk fibroin • Suzuki-Miyaura
[1]
[2]
A. J. J. Lennox, G. C. Lloyd-Jones, Chem. Soc. Rev. 2014, 43, 412-
443.
a) P. Lloyd-Williams, E. Giralt, Chem. Soc. Rev. 2001, 30, 145-157;
b) K. C. Nicolaou, P. G. Bulger, D. Sarlah, Angew. Chem. Int. Ed.
2005, 44, 4442-4489; c) P. Devendar, R.-Y. Qu, W.-M. Kang, B. He,
G.-F. Yang, J. Agric. Food. Chem. 2018, 66, 8914-8934.
[18] a) D.-H. Kim, J. Viventi, J. J. Amsden, J. Xiao, L. Vigeland, Y.-S. Kim,
J. A. Blanco, B. Panilaitis, E. S. Frechette, D. Contreras, D. L.
4
This article is protected by copyright. All rights reserved.