a
Table 2 Suzuki coupling of aryl bromides and phenylboronic acid
In summary, we demonstrated a new type of organic porous
materials (PIC) by copolymerization of an IL structure with
DVB. Application of the PIC was performed as an example
and the Pd nanocatalyst was prepared and employed as a
highly efficient catalyst for Suzuki–Miyaura reaction. The Pd
b
Yield (%)
Entry
R
nanocatalyst (Pd/PIC) was formed in situ with Pd(OAc) /PIC
2
1
2
3
4
5
6
7
8
9
4-MeO
2-MeO
4-tert-Butyl
4-HCO
4-MeCO
4-CN
99
98
97
97
99
98
97
97
95
97
97
96
97
94
99
with a diameter of mainly around 2–5 nm in the Suzuki–
Miyaura reaction. Pd/PIC was a heterogeneous catalyst
for the coupling reaction with high activity and excellent
recyclability. Moreover, Pd/PIC was widely applicable for
the coupling reaction of aryl bromides and chlorides, and
functional groups, such as methoxyl, nitriles, nitro, aldehydes,
ketones and ester groups, were well tolerated under the
reaction conditions.
4-Me
4-NO
2
1-Naphthyl
2-Naphthyl
3-Me
2-CN
2-HCO
1
1
1
1
1
1
0
1
2
3
4
5
This work was supported by the National Natural Science
of Foundation of China (grant No. 20802008, 20636020).
c
2-Me-5-NO
2-Me-4-NO
2
2
Note and references
a
Reaction conditions: aryl bromides, 2.5 mmol; phenylboronic acid,
.0 mmol; [Pd] catalyst (Pd(OAc) /PIC), 0.01 mol%; Na CO
.0 mmol; TBAB, 2.5 mmol; H O, 5 mL; at 100 1C; 2 h; under
1
2
3
(a) P. Wasserscheid and W. Keim, Angew. Chem., Int. Ed., 2000,
9, 3772; (b) T. Welton, Chem. Rev., 1999, 99, 2071; (c) R. Sheldon,
Chem. Commun., 2001, 2399; (d) T. Welton, Coord. Chem. Rev.,
004, 248, 2459.
3
5
2
2
3
,
3
2
b
c
air. Isolated yield. [Pd] catalyst (0.1 mol%).
2
(a) Z. Hu and C. J. Margulis, Proc. Natl. Acad. Sci. U. S. A., 2006,
103, 831; (b) X. Huang, C. J. Margulis, Y. Li and B. J. Berne,
J. Am. Chem. Soc., 2005, 127, 17842; (c) M. Antonietti, D. Kuang,
B. Smarsly and Y. Zhou, Angew. Chem., Int. Ed., 2004, 43, 4988.
(a) J. Dupont, G. S. Fonseca, A. P. Umpierre, P. F. P. Fichtner and
S. R. Teixiera, J. Am. Chem. Soc., 2002, 124, 4228; (b) X. D. Mu,
J. Q. Meng, Z. C. Li and Y. Kou, J. Am. Chem. Soc., 2005, 127,
9694; (c) C. S. Consorti, F. R. Flores and J. Dupont, J. Am. Chem.
Soc., 2005, 127, 12054; (d) M. A. Gelesky, A. P. Umpierre,
G. Machado, R. R. B. Correia, W. C. Magno, J. Morais,
G. Ebeling and J. Dupont, J. Am. Chem. Soc., 2005, 127, 4588;
a
Table 3 Suzuki coupling of aryl chlorides and phenylboronic acid
b
Yield (%)
Entry
1
2
3
4
5
6
7
8
R
4-HCO
4-CN
4-NO
2
4-MeO
2-CN
2-HCO
4-MeCO
4-MeOOC
93 (95)
96 (97)
95 (97)
85 (87)
93 (95)
92 (93)
95 (96)
96
c
d
(
e) C. C. Cassol, A. P. Umpierre, G. Machado, S. I. Wolke and
e
J. Dupont, J. Am. Chem. Soc., 2005, 127, 3298; (f) M. Scariot,
D. O. Silva, J. D. Scholten, G. Machado, S. R. Teixeira,
M. A. Novak, G. Ebeling and J. Dupont, Angew. Chem., Int.
Ed., 2008, 47, 9075.
c
c,f
4
(a) N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457;
a
(
b) R. Martin and S. L. Buchwald, Acc. Chem. Res., 2008, 41,
461 and references therein.
5 (a) T. Tagata and M. Nishida, J. Org. Chem., 2003, 68, 9412;
b) Y. Kitamura, S. Sako, T. Udzu, A. Tsutsui, T. Maegawa,
Reaction conditions: aryl chlorides, 0.5 mmol; phenylboronic acid,
.6 mmol; [Pd] catalyst (Pd(OAc) /PIC), 1.0 mol%; NaOH, 1.0 mmol;
TBAB, 0.5 mmol; H O, 1.0 mL; at 120 1C, 10 h under air. Isolated
yields (GC yields in parenthesis, hexadecane used as internal
1
0
2
b
2
(
Y. Monguchi and H. Sajiki, Chem. Commun., 2007, 5069.
M. Choi, D. H. Lee, K. Na, B. W. Yu and R. Ryoo, Angew. Chem.,
Int. Ed., 2009, 48, 3673.
c
d
e
2 3
standard). Na CO , 1.0 mmol. [Pd] catalyst, 0.01 mol%. [Pd]
6
f
catalyst, 3.0 mol%; KOH used instead of NaOH, 1.0 mmol. [Pd]
catalyst, 0.1 mol%.
7 (a) B. Karimi and P. F. Akhavan, Chem. Commun., 2009, 3750;
(
(
b) S. Ogasawara and S. Kato, J. Am. Chem. Soc., 2010, 132, 4608;
c) C. Ornelas, A. K. Diallo, J. Ruiz and D. Astruc, Adv. Synth.
coupled with phenylboronic acid in good yield but with higher
Pd loading (Table 3, entry 4). The protocol was widely
applicable, and aryl chlorides with functional groups, including
methoxyl, nitriles, nitro, aldehydes, ketones and ester groups,
were coupled with phenylboronic acid smoothly to obtain
corresponding biphenyl compounds.
Catal., 2009, 351, 2147.
8 (a) B. Yuan, Y. Pan, Y. Li, B. Yin and H. Jiang, Angew. Chem.,
Int. Ed., 2010, 49, 4054; (b) B. J. Gallon, R. W. Kojima,
R. B. Kaner and P. L. Diaconescu, Angew. Chem., Int. Ed.,
2
007, 46, 7251.
9
(a) A. F. Littke and G. C. Fu, Angew. Chem., Int. Ed., 2002, 41,
4176; (b) A. C. Frisch and M. Beller, Angew. Chem., Int. Ed., 2005,
4
0 T. J. Hu, T. Schulz, C. Torborg, X. R. Chen, J. Wang, M. Beller
and J. Huang, Chem. Commun., 2009, 7330.
11 J. Huang, T. Jiang, H. Gao, B. Han, Z. Liu, W. Wu, Y. Chang and
4, 674; (c) L. Yin and J. Liebscher, Chem. Rev., 2007, 107, 133.
The PIC has an IL structure (vinylimidazoliumylacetate)
with a potential carbene group and a carboxylic group, which
is important for the formation and stabilization of Pd nano-
particles. The catalytic activity of Pd is highly dependent on
the size of the Pd nanoparticles, and the PIC stabilized the Pd
nanoparticles well in about 2–5 nm. Benefited from the use
of the PIC for Suzuki–Miyaura reaction, no aggregation
of Pd nanoparticles was observed during the reaction and no
leaching of Pd occurred on separation of the heterogeneous
nanocatalyst. In addition, the PIC material was porous, which
was highly profitable for the heterogeneous catalysis.
1
G. Zhao, Angew. Chem., Int. Ed., 2004, 43, 1397.
2 (a) G. Liu, M. Q. Hou, J. Y. Song, T. Jiang, H. L. Fan,
Z. F. Zhang and B. X. Han, Green Chem., 2010, 12, 65;
1
(
b) W. Chen, Y. Zhang, L. Zhu, J. Lan, R. Xie and J. You,
J. Am. Chem. Soc., 2007, 129, 13879; (c) X. Mu, J. Meng, Z. Li and
Y. Kou, J. Am. Chem. Soc., 2005, 127, 9694; (d) M. Trilla,
G. Borja, R. Pleixats, M. W. C. Man, C. Bied and J. J.
E. Moreau, Adv. Synth. Catal., 2008, 350, 2566.
1
3 K. L. Billingsley, K. W. Anderson and S. L. Buchwald, Angew.
Chem., Int. Ed., 2006, 45, 3484.
3
594 Chem. Commun., 2011, 47, 3592–3594
This journal is c The Royal Society of Chemistry 2011