M. Bo c& kowski / Physica B 265 (1999) 1—5
5
liquid metal. The rate of nitrogen dissociation on
the liquid metal surface is kinetically controlled and
it is proportional to N pressure. For AlN the
ꢀ
nitrogen pressure allows to control the mechanism
of synthesis. By combustion of bulk Al, high
purity AlN can be synthesised. For GaN, pressure
allows to extend the stability range up to the tem-
perature where effective crystallization is possible.
Dislocation-free high-quality single crystals can be
grown.
Acknowledgements
Fig. 5. Typical GaN platelet.
The research reported in this paper was sup-
ported by Committee for Scientific Research grant
no. 7783495 C/2399.
in the temperature gradient, the nitrogen from the
hot end of the sample is transported by convection
and diffusion to the cooler part, where the solution
becomes supersaturated and crystallisation of GaN
is possible. The mechanism of GaN crystal growth
is described in details elsewhere [14]. The GaN
crystals are of wurzite structure, in the form of
hexagonal platelets. Fig. 5 shows typical GaN
platelet, grown with the rate of 0.1 mm/h into
References
[1] J.H. Edgar, J. Mater. Res. 7 (1) (1992) 235.
[
2] S. Nakamura, T. Mukai, M. Senoh, N. Iwasa, T. Yamada,
T. Matsushita, H. Kiyoku, Y. Sugimoto, Jpn. J. Appl.
Phys. 35 (1996) L74.
[3] L.M. Sheppard, Ceram. Bull. 69 (11) (1990) 1801.
+
1 0 !1 0, direction, perpendicular to the c-axis.
[4] J.A. Van Vechten, Phys. Rev. B 7 (1973) 1479.
[5] W. Class, Contract Rep., NASA-Cr-1171, (1968).
The platelets are single crystals of perfect morpho-
logy suggesting stable layer by layer growth. Pres-
ently the maximum size of crystals exceeds 15 mm.
The GaN pressure grown crystals are of the highest
structural quality and the lowest dislocation den-
sity (10ꢀ—10ꢂ) [15], ever reported for this material.
[
[
6] J. Karpin
7] I. Grzegory, S. Krukowski, J. Jun, M. Boc
M. Wroblewski, S. Porowski, AIP Conf. Proc. vol. 309,
995, pp. 565.
[8] I. Grzegory, J. Jun, M. Boc
Wroblewski, B. |ucznik, S. Porowski, J. Phys. Chem.
´
ski, S. Porowski, J. Crystal Growth 66 (1984) 11.
´
kowski,
´
1
´
kowski, S. Krukowski, M.
´
Solids 56 (1995) 639.
[
9] S. Krukowski, Z. Romanowski, I. Grzegory, S. Porowski,
5
.3. InN synthesis
J. Crystal Growth 175 (1998) 155.
[
[
[
10] S. Porowski, I. Grzegory, J. Jun, in: J. Jurczak,
B. Baranowski (Eds.), High Pressure Chemical Synthesis,
Elsevier, Amsterdam, 1989, p. 21.
After heating and annealing of indium at high
nitrogen pressure (1—2 GPa) we have never ob-
served the combustion of liquid indium or crystal
growth of indium nitride. This is due to the high
kinetic barrier for indium nitride synthesis at tem-
11] M. Bo c´ kowski, A. Witek, S. Krukowski, M. Wr o´ blewski,
S. Porowski, R.-M. Marin-Ayral, J.-C. Tedenac, J. Matter.
Synth. Process. 5 (6) (1997) 449.
12] M. Saur, F. Behrendt, E.U. Frank, Berichte der Bunsen-
Gesselshaft fur Physicalische Chimie 97 (1993) 900.
perature where InN is stable at N pressure of
ꢀ
2
GPa (only 900 K).
[13] A. Witek, M. Bockowski, A. Presz, M. Wro
Krukowski, W. W"osinski, K. Jab"onski, J. Mater. Sci. 33
1998) 3321.
14] I. Grzegory, M. Boc
M. Wroblewski, S. Porowski, MRS Internet J. Nitrides
´ blewski, S.
´
´
(
[
[
´ kowski, B. |ucznik, S. Krukowski,
6
. Conclusions
´
Semicond. Res. 1 (1996) 20.
The main barrier preventing the direct synthesis
of nitrides is the interface between nitrogen and
15] J.L. Weyher, S. Mueller, I. Grzegory, S. Porowski, J. Crys-
tal Growth 182 (1—2) (1997) 17.