113105-3
Xu et al.
Appl. Phys. Lett. 90, 113105 ͑2007͒
direction. Optical transmission measurements determine the
optical band gaps to be 1.26 and 1.05 eV for different
samples. Burstein-Moss shift is attributed as the factor that
affects the energy gap of InN nanostructures.
The work described was partially supported by a grant
from the Research Grants Council of the Hong Kong Special
Administrative Region, China ͑Project No. 401003͒ and
CUHK direct grants ͑Project codes 2060293 and 2060305͒.
1V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V.
Ivanov, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, J. Ader-
hold, O. Semchinova, and J. Graul, Phys. Status Solidi B 229, R1 ͑2002͒.
2J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W.
J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 3967 ͑2002͒.
3T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, Appl.
Phys. Lett. 81, 1246 ͑2002͒.
FIG. 4. Optical transmission spectra of InN nanostructures dispersed in
ethanol. The inset is the corresponding plots of ͓ln͑1/T͔͒ vs h.
2
4J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. Choi, and P. Yang,
Nature ͑London͒ 422, 599 ͑2003͒.
͓ln͑1/T͔͒2 vs h ͑photon energy͒ and extrapolating the linear
portion to ͓ln͑1/T͔͒2=0. Using this method, the optical band
gaps of the samples synthesized at 800 and 850 °C are de-
termined to be 1.26 and 1.05 eV, respectively. The funda-
mental band gap of InN is a controversial issue. The incon-
sistent values which vary over a large range from ϳ0.7 to
ϳ2.0 eV have been reported. Various mechanisms have also
been proposed to explain the band gap differences in InN,
such as the incorporation of oxygen, the Burstein-Moss ef-
band gaps of our InN nanostructures show a clear blueshift
relative to the values of 0.7–1.0 eV, which are now gener-
ally accepted as the band gap of InN by many researchers.
Possible reasons are discussed as follows: ͑1͒ EDX analyses
indicate the high purity of the synthesized products, which
excludes the effect of oxygen impurity on the band gap. ͑2͒
The theoretical calculations have shown that the quantum
than 20 nm.12 However, the sizes of our InN nanowires and
nanotubes are larger than 50 nm; this effect is therefore neg-
ligible in the present work. ͑3͒ XRD and Raman studies have
indicated that the synthesized InN nanostructures are almost
strain-free. Moreover, it was also reported that InN has an
unusually low pressure coefficient of 0.6–0.9 meV/kbar.2
Thus the strain effect cannot be responsible for the larger
shift of the band gap. ͑4͒ The Burstein-Moss effect is another
important factor that affects the optical band gap. It has been
reported that the optical absorption edges of InN films shift
from 0.7 to 1.7 eV when their free electron concentrations
increase from 1017 to 1020 cm−3.26,27 Moreover, Chang et al.
have studied the transport properties of single InN nano-
wires, and have observed that InN nanowires have metallic
conduction and low resistivity of ϳ4ϫ10−4 ⍀ cm with high
very plausible cause for the blueshift of the optical band gap
in our case due to the high electron concentrations of the InN
nanostructures, as indicated by Raman scattering. However,
more work is needed to study the fundamental band gap of
InN material.
5Q. Wu, Z. Hu, X. Wang, Y. Lu, X. Chen, H. Xu, and Y. Chen, J. Am.
Chem. Soc. 125, 10176 ͑2003͒.
6S. D. Dingman, N. P. Rath, P. D. Markowitz, P. C. Gibbons, and W. E.
Buhro, Angew. Chem., Int. Ed. 39, 1470 ͑2000͒.
7J. Zhang, L. Zhang, X. Peng, and X. Wang, J. Mater. Chem. 12, 802
͑2002͒.
8T. Tang, S. Han, W. Jin, X. Liu, C. Li, D. Zhang, C. Zhou, B. Chen, J.
Han, and M. Meyyapan, J. Mater. Res. 19, 423 ͑2004͒.
9C. H. Liang, L. C. Chen, J. S. Hwang, K. H. Chen, Y. T. Hung, and Y. F.
Chen, Appl. Phys. Lett. 81, 22 ͑2002͒.
10M. C. Johnson, C. J. Lee, E. D. Bourret-Courchesne, S. L. Konsek, S.
Aloni, W. Q. Han, and A. Zettl, Appl. Phys. Lett. 85, 5670 ͑2004͒.
11S. Vaddiraju, A. Mohite, A. Chin, M. Meyyappan, G. Sumanasekera, B.
W. Alphenaar, and M. K. Sunkara, Nano Lett. 5, 1625 ͑2005͒.
12C. K. Chao, H.-S. Chang, T. M. Hsu, C. N. Hsiao, C. C. Kei, S. Y. Kuo,
and J.-I. Chyi, Nanotechnology 17, 3930 ͑2006͒.
13M. Hu, W. Wang, T. T. Chen, L. Hong, C. Chen, C. Chen, Y. Chen, K. H.
Chen, and L. C. Chen, Adv. Funct. Mater. 16, 537 ͑2006͒.
14S. Luo, W. Zhou, W. Wang, Z. Zhang, L. Liu, X. Dou, J. Wang, X. Zhao,
D. Liu, Y. Gao, L. Song, Y. Xiang, J. Zhou, and S. Xie, Appl. Phys. Lett.
87, 063109 ͑2005͒; Small 1, 1004 ͑2005͒.
15B. Schwenzer, L. Loeffler, R. Seshadri, S. Keller, F. F. Lange, S. P. Den-
Baars, and U. K. Mishra, J. Mater. Chem. 14, 637 ͑2004͒.
16L. Yin, Y. Bando, D. Golberg, and M. Li, Adv. Mater. ͑Weinheim, Ger.͒
16, 1833 ͑2004͒.
17K. Sardar, F. L. Deepak, A. Govindaraj, M. M. Seikh, and C. N. R. Rao,
Small 1, 91 ͑2005͒.
18M. Yoshimoto, H. Yamamoto, W. Huang, H. Harima, J. Saraie, A.
Chayahara, and Y. Horino, Appl. Phys. Lett. 83, 3480 ͑2003͒.
19A. G. Bhuiyan, K. Sugita, K. Kasashima, A. Hashimoto, A. Yamamoto,
and V. Yu. Davydov, Appl. Phys. Lett. 83, 4788 ͑2003͒.
20L. Yin, Y. Bando, J. Zhan, M. Li, and D. Golberg, Adv. Mater. ͑Weinheim,
Ger.͒ 17, 1972 ͑2005͒.
21E. P. A. M. Bakkers and M. A. Verheijen, J. Am. Chem. Soc. 125, 3440
͑2003͒.
22X. Wang, S. Che, Y. Ishitani, and A. Yoshikawa, Appl. Phys. Lett. 89,
171907 ͑2006͒.
23V. Yu. Davydov and A. A. Klochikhin, Semiconductors 38, 861 ͑2004͒.
24A. Kasic, M. Schubert, Y. Saito, Y. Nanishi, and G. Wagner, Phys. Rev. B
65, 115206 ͑2002͒.
25D. Olego and M. Cardona, Phys. Rev. B 24, 7217 ͑1981͒.
26V. M. Naik, R. Naik, D. B. Haddad, J. S. Thakur, G. W. Auner, H. Lu, and
W. J. Schaff, Appl. Phys. Lett. 86, 201913 ͑2005͒.
27J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E.
E. Haller, H. Lu, W. J. Schaff, A. Barcz, and R. Jakiela, Appl. Phys. Lett.
84, 2805 ͑2004͒.
In conclusion, we have reported a simple, catalyst-free,
normal pressure CVD method to prepare InN nanowires and
nanotubes. XRD, EDX, SAED, and HRTEM studies show
that the synthesized products are of high purity, and have a
single crystalline wurtzite structure growing along the c-axis
28T. V. Shubina, S. V. Ivanov, V. N. Jmerik, D. D. Solnyshkov, V. A. Vek-
shin, P. S. Kop’ev, A. Vasson, J. Leymarie, A. Kavokin, H. Amano, K.
Shimono, A. Kasic, and B. Monemar, Phys. Rev. Lett. 92, 117407 ͑2004͒.
29C. Y. Chang, G. C. Chi, W. M. Wang, L. C. Chen, K. H. Chen, F. Ren, and
S. J. Pearton, Appl. Phys. Lett. 87, 093112 ͑2005͒.