Full Paper
the suspension and it was stirred overnight. After removal of the
solvent, the crude product was purified by column chromatography
on silica using mixtures of dichloromethane and methanol to give
4c as yellow solid (270 mg, 70.0 %). 1H NMR (200 MHz, CD2Cl2): δ =
7.88 (s, 1 H, N-C3H), 4.87–4.69 (m, 2 H, COD), 3.99 (s, 3 H, HNMe),
3.84 (s, 3 H, HNMe), 3.09–2.90 (m, 2 H, COD), 2.23–2.08 (m, 4 H, COD),
1.89–1.74 (m, 2 H, COD), 1.47–1.33 (m, 2 H, COD) ppm. 13C NMR
(50 MHz, CD2Cl2): δ = 183.9 (NCN), 143.5 (C3), 84.7 (COD), 84.6 (COD),
55.9 (COD), 55.4 (COD), 39.7 (CNMe), 35.2 (COD), 33.4 (COD), 33.3
(COD), 30.8 (COD) ppm.
(CNMe), 36.1 (CNMe), 32.5 (COD), 32.4 (COD), 31.6 (COD), 31.6 (COD),
17.6 (Me), 17.2 (Me), 17.1 (Me) ppm. MS (ESI+): m/z = 642.9 [M –
Cl]+, 534.9 [M – Cl – COD]+.
Acknowledgments
Y. G. thanks Elena Michelucci for measurements and simulations
of the ESI-MS spectra. T. M. thanks AIRC-FIRC (Fondazione
Italiana per la Ricerca sul Cancro, 3-year Fellowship for Italy
Project Code: 18044). The authors also gratefully acknowledge
financial support from the European Cooperation in Science
and Technology (COST) (COST) action CM1105 (STSM to Y. G.),
the Beneficentia Stiftung (Vaduz) and CIRCMSB (Bari, Italy). Fur-
ther, financial support to Y. G. by the Ruhr University Research
School PLUS, funded by Germany's Excellence Initiative [DFG
GSC 98/3], the ERC (grant no. 247450) and EPSRC (grant no. EP/
F034210/1) for P. J. S. are gratefully acknowledged. Dr. Matthew
Reback and Isabelle Daubit (RUB) helped measuring the cyclic
voltammograms during the revision of this paper.
5a: Compound 4a (20 mg, 34.5 μmol), 1 (7.7 mg, 34.5 μmol) and
K2CO3 (4.9 mg, 34.5 μmol) were stirred in dry dichloromethane
(3 mL) at r.t for 48 h. The resulting suspension was filtered through
Celite and the filtrate was concentrated to dryness. The remaining
orange oil was purified by column chromatography on silica using
mixtures of dichloromethane and methanol to give 5a (21.9 mg,
82.8 %) as orange solid. 1H NMR (400 MHz, CD2Cl2): δ = 7.28 (s, 1
H, N-C3H), 7.18 (d, J = 3.3 Hz, 2 H, N-CH=CH-N), 5.34 (d, J = 13.9 Hz,
1 H, N-CH2), 5.07 (d, J = 13.9 Hz, 1 H, N-CH2), 4.31–4.23 (m, 1 H,
COD), 4.22 (s, 3 H, HNMe), 4.21–4.17 (m, 1 H, COD), 4.10 (s, 3 H, HNMe),
3.87 (d, J = 7.6 Hz, 3 H, HNMe), 3.87–3.81 (m, 1 H, COD), 3.80–3.72
(m, 1 H, COD), 2.48–2.37 (m, 2 H, COD), 2.35–2.30 (m, 2 H, COD),
2.27 (s, 3 H, Me), 2.23 (s, 6 H, Me), 2.20–2.15 (m, 2 H, COD), 2.04 (s,
6 H, Me), 1.99–1.91 (m, 2 H, COD) ppm. 13C NMR (101 MHz, CD2Cl2):
δ = 182.0 (NCNTriaz), 176.2 (NCNImidaz), 142.1 (C3), 137.9 (CAr-1), 134.6
(CAr-2), 133.6 (CAr-3), 125.8 (CAr-4), 124.4 (N-CH=CH-N), 123.6 (N-CH=
CH-N), 81.5 (COD), 78.3 (COD), 77.8 (COD), 76.9 (COD), 48.9 (N-CH2),
41.4 (CNMe), 39.1 (CNMe), 38.6 (CNMe), 33.5 (COD), 30.4 (COD), 30.3
(COD), 17.5 (Me), 17.2 (Me), 16.8 (Me) ppm. MS (FAB+): m/z = 640.1
[M]+.
Keywords: Carbenes · Iridium · Medicinal chemistry ·
Metal-based drugs · Protein interactions
[1] a) B. Lippert, Cisplatin, Verlag Helvetica Chimica Acta, Zürich, 1999; b) D.
Wang, S. J. Lippard, Nat. Rev. Drug Discov. 2005, 4, 307–320; c) Y. W. Jung,
S. J. Lippard, Chem. Rev. 2007, 107, 1387–1407; d) N. Cutillas, G. S. Yellol,
C. de Haro, C. Vicente, V. Rodríguez, J. Ruiz, Coord. Chem. Rev. 2013, 257,
2784–2797; e) T. C. Johnstone, K. Suntharalingam, S. J. Lippard, Chem.
Rev. 2016, 116, 3436–3486.
6a: [Ir(COD)Cl]2 (35.9 mg, 53.5 μmol) and NaBF4 (11.8 mg, 107 μmol)
were dissolved in acetonitrile (2 mL) and stirred for 30 min at room
temperature. Subsequently, 3a (30 mg, 107 μmol) and KOtBu
(12 mg, 107 μmol) were added to the suspension and it was stirred
overnight. After removal of the solvent, the crude product was puri-
fied by column chromatography on silica using mixtures of di-
chloromethane and methanol to give 6a as bright orange solid
[2] a) G. Gasser, I. Ott, N. Metzler-Nolte, J. Med. Chem. 2011, 54, 3–25; b) G.
Gasser, N. Metzler-Nolte, Curr. Opin. Chem. Biol. 2012, 16, 84–91; c) C. G.
Hartinger, N. Metzler-Nolte, P. J. Dyson, Organometallics 2012, 31, 5677–
5685.
[3] a) K. K.-W. Lo, K. Y. Zhang, RSC Adv. 2012, 2, 12069–12083; b) L. He, Y. Li,
C.-P. Tan, R.-R. Ye, M.-H. Chen, J.-J. Cao, L.-N. Ji, Z.-W. Mao, Chem. Sci.
2015, 6, 5409–5418.
[4] a) Y. Geldmacher, M. Oleszak, W. S. Sheldrick, Inorg. Chim. Acta 2012,
393, 84–102; b) V. Novohradsky, L. Zerzankova, J. Stepankova, A. Kisova,
H. Kostrhunova, Z. Liu, P. J. Sadler, J. Kasparkova, V. Brabec, Metallomics
2014, 6, 1491–1501; c) A. Kumar, A. Kumar, R. K. Gupta, R. P. Paitandi,
K. B. Singh, S. K. Trigun, M. S. Hundal, D. S. Pandey, J. Organomet. Chem.
2016, 801, 68–79; d) M. Graf, Y. Gothe, N. Metzler-Nolte, R. Czerwieniec,
K. Sünkel, Inorg. Chim. Acta 2017, 463, 36–43; e) M. Graf, Y. Gothe, N.
Metzler-Nolte, K. Sünkel, Z. Anorg. Allg. Chem. 2017, 643, 306–310; f) M.
Graf, Y. Gothe, D. Siegmund, N. Metzler-Nolte, K. Sünkel, Inorg. Chim. Acta
2018, 471, 265–271.
[5] a) I. Romero-Canelon, P. J. Sadler, Inorg. Chem. 2013, 52, 12276–91; b) Z.
Liu, P. J. Sadler, Acc. Chem. Res. 2014, 47, 1174–85.
[6] a) P. K. Sasmal, C. N. Streu, E. Meggers, Chem. Commun. 2013, 49, 1581–
1587; b) see ref.[5b] c) J. J. Soldevila-Barreda, P. J. Sadler, Curr. Opin. Chem.
Biol. 2015, 25, 172–183; d) P. Zhang, P. J. Sadler, Eur. J. Inorg. Chem. 2017,
1541–1548.
[7] a) J. Rajput, J. R. Moss, A. T. Hutton, D. T. Hendricks, C. E. Arendse, C.
Imrie, J. Organomet. Chem. 2004, 689, 1553–1568; b) P. V. Simpson, C.
Schmidt, I. Ott, H. Bruhn, U. Schatzschneider, Eur. J. Inorg. Chem. 2013,
2013, 5547–5554; c) Y. Gothe, T. Marzo, L. Messori, N. Metzler-Nolte,
Chem. Commun. 2015, 51, 3151–3153; d) P. V. Simpson, K. Radacki, H.
Braunschweig, U. Schatzschneider, J. Organomet. Chem. 2015, 782, 116–
123; e) Y. Gothe, T. Marzo, L. Messori, N. Metzler-Nolte, Chem. Eur. J. 2016,
22, 12487–94.
1
(72 mg, 44.8 %). H NMR (400 MHz, CD2Cl2): δ = 7.49 (d, J = 3.8 Hz,
2 H, N-CH=CH-S), 7.12 (d, J = 3.9 Hz, 2 H, N-CH=CH-S), 5.69 (s, 4 H,
N-CH2), 4.17 (s, 4 H, COD), 2.55–2.34 (m, 8 H, COD), 2.30 (s, 6 H, Me),
2.25 (s, 12 H, Me), 2.07 (s, 12 H, Me) ppm. 13C NMR (101 MHz,
CD2Cl2): δ = 206.1 (NCN), 138.0 (CAr-1), 135.7 (N-CH=CH-S), 134.5
(CAr-2), 133.9 (CAr-3), 127.2 (CAr-4), 123.4 (N-CH=CH-S), 87.9 (COD),
56.6 (N-CH2), 32.5 (COD), 32.4 (COD), 17.6 (Me), 17.2 (Me), 17.0 (Me)
ppm. MS (ESI+): m/z = 682.9 [M – COD – Cl]+, 790.9 [M – Cl]+. MS
(FAB+): m/z = 682.9 [M – COD – Cl]+, 790.9 [M – Cl]+.
6b: A Schlenk flask was charged with 4c (40.0 mg, 76.3 μmol), 3a
(21.5 mg, 76.3 μmol) and K2CO3 (10.6 mg, 76.3 μmol) and the mix-
ture was stirred in dry dichloromethane (4 mL) at r.t for 120 h. The
resulting suspension was filtered through Celite and the filtrate was
concentrated to dryness. The remaining orange oil was purified by
column chromatography on silica using mixtures of dichloro-
methane and methanol to give 6b (43.9 mg, 84.8 %) as orange
1
solid. H NMR (400 MHz, CD2Cl2): δ = 8.66 (s, 1 H, N-C3H), 7.53 (d,
J = 3.9 Hz, 1 H, N-CH=CH-S), 7.07 (d, J = 3.9 Hz, 1 H, N-CH=CH-S),
5.52 (d, J = 14.7 Hz, 1 H, N-CH2), 5.43 (d, J = 14.6 Hz, 1 H, N-CH2),
4.14 (s, 3 H, HNMe), 4.22–3.95 (m, 4 H, COD), 4.09 (s, 3 H, HNMe), 2.47–
2.33 (m, 4 H, COD), 2.29 (s, 3 H, Me), 2.24 (s, 6 H, Me), 2.22–2.11 (m,
4 H, COD), 2.07 (s, 6 H, Me) ppm. 13C NMR (101 MHz, CD2Cl2): δ =
207.9 (NCNThiaz), 179.2 (NCNTriaz), 145.7 (C3), 138.0 (CAr-1), 135.2 (N-
CH=CH-S), 134.5 (CAr-2), 133.9 (CAr-3), 127.0 (CAr-4), 123.9 (N-CH=CH-
S), 83.6 (COD), 81.8 (COD), 81.1 (COD), 80.7 (COD), 56.7 (N-CH2), 40.6
[8] Y. Kondo, S. Izawa, S. Kusabayashi, J. Chem. Soc., Perkin Trans. 2 1988,
1925–1928.
[9] a) H. V. Huynh, N. Meier, T. Pape, F. E. Hahn, Organometallics 2006, 25,
3012–3018; b) I. Piel, M. D. Pawelczyk, K. Hirano, R. Froehlich, F. Glorius,
Eur. J. Org. Chem. 2011, 2011, 5475–5484, S5475/1–S5475/132.
Eur. J. Inorg. Chem. 2018, 2461–2470
2469
© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim