ACCEPTED MANUSCRIPT
F., Enhanced thermoelectric figure of merit in nanostructured n-type silicon
germanium bulk alloy. Appl. Phys. Lett. 2008, 93 (19), 193121.
7
. Joshi, G.; Lee, H.; Lan, Y.; Wang, X.; Zhu, G.; Wang, D.; Gould, R. W.; Cuff, D.
C.; Tang, M. Y.; Dresselhaus, M. S.; Chen, G.; Ren, Z., Enhanced Thermoelectric
Figure-of-Merit in Nanostructured p-type Silicon Germanium Bulk Alloys. Nano Lett.
2
008, 8 (12), 4670-4674.
8
. Zhu, G. H.; Lee, H.; Lan, Y. C.; Wang, X. W.; Joshi, G.; Wang, D. Z.; Yang, J.;
Vashaee, D.; Guilbert, H.; Pillitteri, A.; Dresselhaus, M. S.; Chen, G.; Ren, Z. F.,
Increased Phonon Scattering by Nanograins and Point Defects in Nanostructured
Silicon with a Low Concentration of Germanium. Phys. Rev. Lett. 2009, 102 (19),
1
9
96803.
. Xu, Y.-d.; Xu, G.-y.; Ge, C.-c., Improvement in thermoelectric properties of
n-type Si95Ge5 alloys by heavy multi-dopants. Scripta Mater. 2008, 58 (12),
1
1
070-1073.
0. Mingo, N.; Hauser, D.; Kobayashi, N. P.; Plissonnier, M.; Shakouri, A.,
“
Nanoparticle-in-Alloy” Approach to Efficient Thermoelectrics: Silicides in SiGe.
Nano Lett. 2009, 9 (2), 711-715.
1. Janka, O.; Zaikina, J.; Bux, S.; Tabatabaifar, H.; Yang, H.; Browning, N. D.;
1
Kauzlarich, S. M., Microstructure Investigations of Yb-substituted Mg2Si for
Thermoelectric Applications. In J. Mater. Chem. C, 2016.
1
2. Liao, B.; Chen, G., Nanocomposites for thermoelectrics and thermal engineering.
MRS Bull. 2015, 40 (9), 746-752.
3. Yu, B.; Zebarjadi, M.; Wang, H.; Lukas, K.; Wang, H.; Wang, D.; Opeil, C.;
1
Dresselhaus, M.; Chen, G.; Ren, Z., Enhancement of Thermoelectric Properties by
Modulation-Doping in Silicon Germanium Alloy Nanocomposites. Nano Lett. 2012,
1
2 (4), 2077-2082.
1
4. Zaikina, J. V.; Batuk, M.; Abakumov, A. M.; Navrotsky, A.; Kauzlarich, S. M.,
Facile Synthesis of Ba1–xKxFe2As2 Superconductors via Hydride Route. J. Am.
Chem. Soc. 2014, 136 (48), 16932-16939.
1
5. Sui, F.; He, H.; Bobev, S.; Zhao, J.; Osterloh, F. E.; Kauzlarich, S. M., Synthesis,
Structure, Thermoelectric Properties, and Band Gaps of Alkali Metal Containing Type
I Clathrates: A8Ga8Si38 (A = K, Rb, Cs) and K8Al8Si38. Chem. Mater. 2015, 27 (8),
2
1
812-2820.
6. Bux, S. K.; Blair, R. G.; Gogna, P. K.; Lee, H.; Chen, G.; Dresselhaus, M. S.;
Kaner, R. B.; Fleurial, J.-P., Nanostructured Bulk Silicon as an Effective
Thermoelectric Material. Ad. Func. Mater. 2009, 19 (15), 2445-2452.
1
7. Wood, C.; Chmielewski, A.; Zoltan, D., Measurement of Seebeck coefficient
using a large thermal gradient. Rev. Sci. Instrum. 1988, 59 (6), 951-954.
8. Dunham, S. T., MODELING OF THE KINETICS OF DOPANT
PRECIPITATION IN SILICON. J. Electrochem. Soc. 1995, 142 (8), 2823-2828.
9. Joshua, M., Protocols for the high temperature measurement of the Seebeck
coefficient in thermoelectric materials. Meas. Sci. Technol. 2013, 24 (8), 085601.
0. Borup, K. A.; de Boor, J.; Wang, H.; Drymiotis, F.; Gascoin, F.; Shi, X.; Chen, L.;
Fedorov, M. I.; Muller, E.; Iversen, B. B.; Snyder, G. J., Measuring thermoelectric
1
1
2
1
6