P. Schmidt et al.
FULL PAPER
[11] S. Jörgens, D. Johrendt, A. Mewis, Chem. Eur. J. 2003, 9, 2405.
ving.de/urn:nbn:de:bsz:14-ds-1200397971615-4054.
[13] H. Oppermann, O. Schneider, E. Wittig, Chem.-Tech. (Heidel-
berg) 1966, 18, 433.
[14] G. Krabbes, W. Bieger, K.-H. Sommer, T. Söhnel, U. Steiner,
GMIN Version 5.0, Package TRAGMIN for Calculation of
Thermodynamic Equilibrium, Dresden, 2007.
All sample handling for physical properties measurements was
done under Ar or He atmospheres. The electrical resistance of a
microcrystalline sample, which was cold compressed in a cylindrical
sapphire cell, was measured in the temperature range 4–320 K by
a DC method (van der Pauw). As a result of the nature of the
sample the estimated inaccuracy of the absolute resistivity is
Ϯ20%.
[15] M. Lenz, R. Gruehn, Chem. Rev. 1997, 97, 2967.
[16] H. Oppermann, W. Reichelt, G. Krabbes, E. Wolf, Krist. Tech.
1977, 12, 717.
Magnetisation measurements were performed between 1.8 and
400 K for selected magnetic field strengths with a SQUID magne-
tometer (MPMS XL-7, Quantum Design). About 100 mg of a
microcrystalline sample were contained in a precalibrated quartz
tube. Because the sample contained a small amount of ferromag-
netic impurities the susceptibility data were corrected by the
Honda–Owen method [extrapolation of high-field χ(H) data for
1/HǞ0 for all temperatures].
[17] D. Harker, Z. Kristallogr. 1934, 89, 175.
[18] K. Brandenburg, DIAMOND 3.1e, Crystal and Molecular
Structure Visualization, Crystal Impact GbR, Bonn, 2007.
[19] A. H. Daane, R. E. Rundle, H. G. Smith, F. H. Spedding, Acta
Crystallogr. 1954, 7, 532.
[20] F. Philipp, P. Schmidt, M. Ruck, W. Schnelle, J. Solid State
Chem. 2008, 181, 2859.
[21] T. Matkovic, P. Matkovic, Metalurgija 1992, 31, 107.
[22] A. R. Moodenbaugh, D. C. Johnston, R. Viswanathan, Mater.
Res. Bull. 1974, 9, 1671.
The quantum-mechanical calculations were carried out by using
the linear muffin-tin orbital (LMTO) method[38–40] in its tight-bind-
ing representation[41] through the LMTO-ASA 4.7 program.[42] The
chemical bonding was investigated by using the Crystal Orbital
Hamilton Population (COHP) concept,[43] which is an energy-re-
solved partitioning technique of the band-structure energy (sum
of the Kohn–Sham eigenvalues) in terms of atomic and bonding
contributions.[44] For convenience, the COHP plots are set up such
that bonding contributions are given to the right and antibonding
contributions are given to the left. The figures were generated with
the program wxDragon.[45]
[23] R. D. Shannon, C. T. Prewitt, Acta Crystallogr., Sect. B 1969,
25, 925.
[24] P. W. Selwood, Magnetochemistry, 2nd ed., Interscience Pub-
lishers, New York, 1956.
[25] R. D. Shannon, Acta Crystallogr., Sect. A 1976, 32, 751.
[26]
[27]
[28]
L. Pauling, B. Kamb, Proc. Natl. Acad. Sci. (USA) 1986, 83,
3569.
G. Brauer, Handbuch der Präparativen Anorganischen Chemie,
3rd ed., Enke Verlag, Stuttgart, 1975.
H. Mayer, G. Pupp, Z. Kristallogr. 1977, 145, 321.
Further details of the crystal-structure investigation may be ob-
tained from the Fachinformationszentrum Karlsruhe, 76344 Egg-
enstein-Leopoldshafen, Germany, on quoting the depository
number CSD-420650.
[29] H. Hahn, P. Ness, Z. Anorg. Allg. Chem. 1959, 302, 136–154.
[30] M. Binnewies, K. Rinke, H. Schäfer, Z. Anorg. Allg. Chem.
1973, 50, 395.
[31] O. Knacke, O. Kubaschevski, K. Hesselmann, Thermochemical
Properties of Inorganic Substances, 2nd ed., Springer, Berlin,
1991.
Acknowledgments
[32] H. Oppermann, G. Stöver, E. Wolf, Z. Anorg. Allg. Chem. 1976,
419, 200.
The authors thank Mrs. S. Müller, Max Planck Institute for Chemi-
cal Physics of Solids, Dresden, for performing the thermogravime-
tric measurements. Financial support by the Deutsche Forschungs-
gemeinschaft (DFG) is gratefully acknowledged.
[33] G. Chattopadhyay, J. M. Juneja, J. Nucl. Mater. 1993, 202, 10.
[34] R. de Boer, E. H. P. Cordfunke, J. Chem. Thermodyn. 1998, 30,
87.
[35] X-Shape 1.06, Program for Crystal Optimization for Numerical
Absorption Correction, STOE & Cie GmbH, Darmstadt, 1999.
[36] X-Red-32 1.01, Program for Data Reduction, STOE & Cie
GmbH, Darmstadt, 2001.
[37] G. M. Sheldrick, SHELX-97, Program for Crystal Structure
Determination, University of Göttingen, 1997.
[38] O. K. Andersen, Phys. Rev. B 1975, 12, 3060.
[39] H. Skriver, The LMTO Method, Springer, Berlin, 1984.
[40] O. K. Andersen, The Electronic Structure of Complex Systems,
Plenum, New York, 1984.
[41] O. K. Andersen, O. Jepsen, Phys. Rev. Lett. 1984, 53, 2571.
[42] G. Krier, O. Jepsen, A. Burkhardt, O. K. Andersen, The TB-
LMTO-ASA Program, version 4.7, Max-Planck-Institut für
Festkörperforschung, Stuttgart, Germany.
[1] C. Stoltz, K. Ramesha, S. A. Sirchio, Z. S. Gönen, B. W. Eich-
horn, L. Salamanca-Riba, J. Gopalakrishnan, J. Am. Chem.
Soc. 2003, 125, 4285.
[2] A. Schlechte, R. Niewa, M. Schmidt, G. Auffermann, Yu.
Prots, W. Schnelle, D. Gnida, T. Cichorek, F. Steglich, R.
Kniep, Sci. Technol. Adv. Mater. 2007, 8, 341.
[3] C. Wang, C. Eylem, T. Hughbanks, Inorg. Chem. 1998, 37, 390.
[4] H. Kleinke, B. Harbrecht, Z. Anorg. Allg. Chem. 1999, 625,
1873.
[5] N. Soheilnia, K. M. Kleinke, H. Kleinke, Chem. Mater. 2007,
19, 1482.
[6] A. Zygmunt, A. Murasik, S. Ligenza, J. Leciejewicz, Phys.
Status Solidi A 1974, 22, 75.
[7] W. B. Pearson, Z. Kristallogr. 1985, 171, 23.
[8] F. Philipp, P. Schmidt, E. Milke, M. Binnewies, S. Hoffmann,
J. Solid State Chem. 2008, 181, 758.
[9] G. Kliche, Z. Naturforsch., Teil B 1986, 41, 130.
[10] H. D. Lutz, Th. Schmidt, G. Wäschenbach, Z. Anorg. Allg.
Chem. 1988, 562, 7.
[43] R. Dronskowski, P. E. Blöchl, J. Phys. Chem. 1993, 97, 8617.
[44] R. Dronskowski, Computational Chemistry of Solid State Ma-
terials, Wiley-VCH, Weinheim, 2005.
[45] B. Eck, wxDragon 1.5.1, Aachen, 1994–2009; available at:
Received: April 16, 2009
Published Online: June 17, 2009
3110
www.eurjic.org
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2009, 3102–3110