3
016
D.-S. Wang, Y.-G. Zhou / Tetrahedron Letters 51 (2010) 3014–3017
Next, some commercially available chiral diphosphine ligands
quinoxalines can be hydrogenated smoothly with 57% and 65%
ee, respectively (Scheme 3).
were screened (Table 3). Enantioselectivities increased slightly
when SynPhos, SegPhos, and Cl–MeO–BiPhep were employed in-
stead of MeO–BiPhep (entries 2, 3, and 6). When BINAP and DIOP
were used, the reaction proceeded with full conversion but with
lower enantioselectivities (entries 4 and 5, 79% and 78% ee). Best
enantioselectivity was obtained with SegPhos (89% ee). When
piperidineÁTfOH was reduced to 5 mol %, the enantioselectivity in-
creased slightly (entry 7, 91% ee). The common metal precursors
In conclusion, we have developed a new strategy for iridium-
catalyzed asymmetric hydrogenation of quinolines and quinoxa-
lines by Brønsted acid-mediated substrate activation. With cata-
lytic amount of piperidine triflate (5 mol %), the reaction can
proceed smoothly with up to 92% ee. This new method provides
a supplement to the reported catalytic system with iridium-
diphosphine complex. Its application in the asymmetric hydroge-
nation of other heteroaromatic compounds is under investigation.
such as [Rh(COD)
stead of [Ir(COD)Cl]
versions and poor enantioselectivities were obtained. Thus, the
optimized conditions were [Ir(COD)Cl] /(R)-SegPhos/THF/ with
mol % of piperidineÁTfOH as an additive.
Under the optimal conditions, a variety of 2-substituted quino-
2
4 2 2
]BF and [RuCl (p-cymene)] were also tested in-
2
to ensure the scope of our strategy. Low con-
Acknowledgments
2
5
We are grateful for the financial support from National Science
Foundation of China (20872140 and 20921092), National Basic Re-
search Program (2010CB833300), and Chinese Academy of
Sciences.
lines were hydrogenated smoothly to give the desired products in
excellent yields and high enantioselectivities (Table 4, up to 92%
ee). It was found that the length of the side chain influenced both
the enantioselectivity and reactivity (entries 1–4). So iridium was
increased to 2 mol % to guarantee full conversions for all sub-
strates. It was noted that best result was obtained for quinoline
with a free hydroxyl group on the side chain (entry 5, 92% ee). 2-
Arenethyl-substituted quinolines were also hydrogenated with
Supplementary data
8
8–89% ee (entries 6 and 7). Substitution at the 6-position had
References and notes
no obvious effect on either yield or enantioselectivity, slightly
higher ee was obtained with more electron-donating group (entry
9
only moderate yield and enantioselectivity (entry 11, 78% ee).
In contrast to quinolines, the asymmetric hydrogenation of
quinoxaline derivatives is much less studied. Very recently, it at-
tracted much attention and achieved some progress.1 Gratifying,
the strategy developed here can also be extended to the asymmet-
ric hydrogenation of quinoxaline derivatives. Under the above opti-
mal conditions, both 2-ethyl- and 2-phenyl-substituted
1.
(a) Blaser, H.-U.; Pugin, B.; Spindler, F. In Applied Homogeneous Catalysis with
Organometallic Compounds; Cornils, B., Herrmann, W. A., Eds., 2nd ed.; Wiley-
VCH: Weinheim, 2000. Chapter 3.3.1; (b) Rylander, P. N. Catalytic
Hydrogenation in Organic Synthesis; Academic Press: New York, 1979. p 175;
, 91% ee). However, 2-phenylquinoline was hydrogenated with
(
c)The Handbook of Homogeneous Hydrogenation; de Vries, J. G., Elsevier, C. J.,
Eds.; Wiley-VCH: Weiheim, 2007.
5
2. For recent reviews on hydrogenation of aromatic compounds, see: (a) Glorius,
F. Org. Biomol. Chem. 2005, 3, 4171–4175; (b) Lu, S.-M.; Han, X.-W.; Zhou, Y.-G.
Chin. J. Org. Chem. 2005, 25, 634–640; (c) Dyson, P. J. Dalton Trans. 2003, 2964–
2974; (d) Zhou, Y.-G. Acc. Chem. Res. 2007, 40, 1357–1366; (e) Kuwano, R.
Hetereocycles 2008, 76, 909–922.
3.
(a) Keay, J. G.. In Comprehensive Organic Synthesis; Pergamon: Oxford, 1991;
Vol. 8. p 579; (b) Katrizky, A. R.; Rachwal, S.; Bachwal, B. Tetrahedron 1996,
5
2, 15031–15070; (c) Barton, D. H.; Nakanishi, K.; Meth-Cohn, O.. In
Comprehensive Natural Products Chemistry; Elsevier: Oxford, 1999; Vol. 1–9.
4. Wang, W.-B.; Lu, S.-M.; Yang, P.-Y.; Han, X.-W.; Zhou, Y.-G. J. Am. Chem. Soc.
2003, 125, 10536–10537.
Table 4
a
Asymmetric hydrogenation of quinolines
5
.
For our group’s work on asymmetric hydrogenation of quinolines, see: (a) Lu,
S.-M.; Han, X.-W.; Zhou, Y.-G. Adv. Synth. Catal. 2004, 346, 909–912; (b) Yang,
P.-Y.; Zhou, Y.-G. Tetrahedron: Asymmetry 2004, 15, 1145–1149; (c) Zhao, Y.-J.;
Wang, Y.-Q.; Zhou, Y.-G. Chin. J. Catal. 2005, 26, 737–739; (d) Wang, D.-W.;
Zeng, W.; Zhou, Y.-G. Tetrahedron: Asymmetry 2007, 18, 1103–1107; (e) Lu, S.-
M.; Han, X.-W.; Zhou, Y.-G. J. Organomet. Chem. 2007, 692, 3065–3069; (f)
Wang, X.-B.; Zhou, Y.-G. J. Org. Chem. 2008, 73, 5640–5642; (g) Wang, D.-W.;
Wang, X.-B.; Wang, D.-S.; Lu, S.-M.; Zhou, Y.-G.; Li, Y.-X. J. Org. Chem. 2009, 74,
R
R
[
2
Ir(COD)Cl] / (R)-SegPhos
R1 TfOH NC
.
H11, THF, 700 psi H
R1
N
5
2
N
H
1
2
Entry
R/R1
Yieldb (%)
Eec (%)
1
2
3
4
5
6
7
8
9
H/Me
H/Et
H/n-Pr
H/n-Bu
95 (2a)
99 (2b)
91 (2c)
98 (2d)
96 (2e)
98 (2f)
99 (2g)
88 (2h)
95 (2i)
88 (2j)
67 (2k)
91 (R)
87 (R)
89 (R)
84 (R)
92 (S)
88 (R)
89 (R)
90 (R)
91 (R)
89 (R)
78 (S)
2780–2787; (h) Wang, D.-S.; Zhou, J.; Wang, D.-W.; Guo, Y.-L.; Zhou, Y.-G.
Tetrahedron Lett. 2010, 51, 525–528; (i) Wang, D.-W.; Wang, D.-S.; Chen, Q.-A.;
Zhou, Y.-G. Chem. Eur. J. 2010, 16, 1133–1136.
6. For other groups’ work on iridium-catalyzed asymmetric hydrogenation of
quinolines, see: (a) Xu, L. J.; Lam, K. H.; Ji, J. X.; Wu, J.; Fan, Q.-H.; Lo, W.-H.;
Chan, A. S. C. Chem. Commun. 2005, 1390–1392; (b) Lam, K. H.; Xu, L. J.; Feng, L.
C.; Fan, Q.-H.; Lam, F. L.; Lo, W.-H.; Chan, A. S. C. Adv. Synth. Catal. 2005, 347,
1755–1758; (c) Wu, J.; Chan, A. S. C. Acc. Chem. Res. 2006, 39, 711–720; (d)
Tang, W.-J.; Zhu, S.-F.; Xu, L.-J.; Zhou, Q.-L.; Fan, Q.-H.; Zhou, H.-F.; Lam, K.;
Chan, A. S. C. Chem. Commun. 2007, 613–615; (e) Wang, Z.-J.; Deng, G.-J.; Li, Y.;
He, Y.-M.; Tang, W.-J.; Fan, Q.-H. Org. Lett. 2007, 9, 1243–1246; (f) Chan, S.-H.;
Lam, K.-H.; Li, Y.-M.; Xu, L.-J.; Tang, W.-J.; Lam, F.-L.; Lo, W.-H.; Yu, W.-Y.; Fan,
Q.-H.; Chan, A. S. C. Tetrahedron: Asymmetry 2007, 18, 2625–2631; (g) Reetz, M.
T.; Li, X.-G. Chem. Commun. 2006, 2159–2160; (h) Qiu, L.; Kwong, F. Y.; Wu, J.;
Lam, W. H.; Chan, S.; Yu, W.-Y.; Li, Y.-M.; Guo, R.; Zhou, Z.; Chan, A. S. C. J. Am.
Chem. Soc. 2006, 128, 5955–5965; (i) Lu, S.-M.; Bolm, C. Adv. Synth. Catal. 2008,
2 2
H/Me CH(OH)CH -
H/Phenethyl
H/3,4-(MeO)
Me/Me
2 6 3 2 2
C H (CH ) -
MeO/Me
F/Me
H/Ph
10
1
1
a
Conditions: 0.25 mmol of quinolines, [Ir(COD)Cl]
2
(2 mol %), (R)-SegPhos
(
4.4 mol %), piperidineÁTfOH (5 mol %), 3 mL of THF, rt, 16 h.
b
Isolated yields.
c
Determined by HPLC.
3
50, 1101–1105; (j) Yamagata, T.; Tadaoka, H.; Nagata, M.; Hirao, T.; Kataoka,
Y.; Ratovelomanana-Vidal, V.; Genet, J. P.; Mashima, K. Organometallics 2006,
5, 2505–2513; (k) Jahjah, M.; Alame, M.; Pellet-Rostaing, S.; Lemaire, M.
2
Tetrahedron: Asymmetry 2007, 18, 2305–2312; (l) Deport, C.; Buchotte, M.;
Abecassis, K.; Tadaoka, H.; Ayad, T.; Ohshima, T.; Genet, J.-P.; Mashima, K.;
Ratovelomanana-Vidal, V. Synlett 2007, 2743–2747; (m) Fache, F. Synlett 2004,
H
N
N
[
Ir(COD)Cl]
2
/ (R)-SegPhos
2
827–2829; (n) Fujita, K.-I.; Kitatsuji, C.; Furukawa, S.; Yamaguchi, R.
N
R
.
N
H
R
TfOH NC
5
H
11, THF, 700 psi H
2
Tetrahedron Lett. 2004, 45, 3215–3217; (o) Eggenstein, M.; Thomas, A.;
Theuerkauf, J.; Franciò, G.; Leitner, W. Adv. Synth. Catal. 2009, 351, 725–732.
7. For the work on organocatalytic asymmetric transfer hydrogenation of
quinolines, see: (a) Rueping, M.; Theissmann, T.; Antonchick, A. P. Synlett
2006, 1071–1074; (b) Rueping, M.; Antonchick, A. P.; Theissmann, T. Angew.
3
a: R = Et
b: R = Ph
4a: R = Et (90%, 57% ee)
4b: R = Ph (89%, 65% ee)
3
Scheme 3. Asymmetric hydrogenation of quinoxalines.