RSC Advances
DOI: 10.1039/C5RA09102K
th
5
5
1.5
Reaction conditions: 4ꢀbromoanisole (1 mmol), phenylboronic acid (1.2 mmol),
PdCl (0.01 mmol), sucrose (0.005 mmol), K CO (1.2 mmol) in H O (3 mL) at
88
7
(a) A. Modak, J. Mondal, M. Sasidharan and A. Bhaumik, Green
Chem., 2011, 13, 1317–1331; (b) C. I. Herrerías, X. Yao, Z. Li and
C.ꢀJ. Li, Chem. Rev., 2007, 107, 2546–2562; (c) N. Jiang and A. J.
Ragauskas, Tetrahedron Lett., 2006, 47, 197–200; (d) I. P.
Beletskaya and A. V. Cheprakov, in Organic Synthesis in Water, ed.
P. A. Grieco, Blackie Academic & Professional, London, 1998, ch. 5,
p. 141; (e) I. P. Beletskaya and A. V. Cheprakov, in Handbook of
Organopalladium Chemistry for Organic Synthesis, ed. E.ꢀI. Negishi
and A. de Meijere, Wiley, New York, 2002, vol. 2, ch. 10, p. 2957.
(a) A. Decottignies, A. Fihri, G. Azemar, F. DjedainiꢀPilard and C.
Len, Catal. Commun., 2013, 32, 101–107; (b) V. Polshettiwar, C.
Len and A. Fihri, Coord. Chem. Rev., 2009, 253, 2599–2626; (c) G.
Hervé, G. Sartori, G. Enderlin, G. Mackenzie and C. Len, RSC Adv.,
2014, 4, 18558–18594; (d) S. GallagherꢀDuval, G. Hervé, G. Sartori,
G. Enderlin and C. Len, New J. Chem., 2013, 37, 1989–1995; (e ) G.
Sartori, G. Enderlin, G. Hervé and C. Len, Synthesis, 2012, 767–772;
a
2
2
3
2
room temperature.
b
65
Isolated yield after chromatography.
5
0
5
In conclusion we report a highly environmentally friendly
reaction protocol for aqueous Suzuki–Miyaura crossꢀcoupling
catalysis under air at room temperature, which is applicable to a
broad range of substrates. The ability to use water as the reaction
medium and sucrose as ligand greatly increases the green
credentials of the method. Correspondingly, recycling of the
active catalytic species can be performed several times without
significant loss in catalytic activity. We anticipate that this
approach will offer an alternative synthetic strategy for the
practical construction of biaryl/heterobiaryl compounds in near
future. Studies aimed at extending the scope of this catalyst
system to other types of crossꢀcoupling and related reactions are
currently ongoing in our laboratory.
70
8
1
75
(f) G. Sartori, G. Hervé, G. Enderlin and C. Len, Synthesis, 2013,
1
3
30–333; (g) P. R. Boruah, A. A. Ali, B. Saikia and D. Sarma, Green
8
8
9
9
0
5
0
5
Chem., 2015, 17, 1442–1445; (h) B. Saikia, A. A. Ali, P. R. Boruah,
D. Sarma and N. C. Barua, New J. Chem., 2015, 39, 2440–2443.
(a) M. Mondal and U. Bora, Green Chem., 2012, 14, 1873–1876; (b)
P. R. Boruah, M. J. Koiri, U. Bora and D. Sarma, Tetrahedron Lett.,
9
Acknowledgement
2
014, 55, 2423–2425.
10 (a) F. Li and T. S. A. Hor, Adv. Synth. Catal., 2008, 350, 2391–2400;
b) L. R. Moore, E. C. Western, R. Cracium, J. M. Spruell, D. A.
Dixon, K. P. O’Halloran and K. H. Shaughnessy, Organomettallics,
008, 27, 576–593; (c) P. Capek, R. Pohl and M. Hocek, Org.
The authors acknowledge the Department of Science and
Technology, New Delhi for financial assistance to the
Department of Chemistry, Dibrugarh University, Dibrugarh,
Assam, INDIA.
20
(
2
Biomol.Chem., 2006, 4, 2278–2284; (d) B. Saikia, P. R. Boruah, A.
A. Ali and D. Sarma, Tetrahedron Lett., 2015, 56, 633–635.
(a) B. Li, C. Wang, G. Chen and Z. Zhang, J. Environ. Sci., 2013, 25,
Notes and references
Department of Chemistry, Dibrugarh University, Dibrugarh-786004,
Assam, India. Tel: +91 9954314676; E-mail:bishwajitsaikia@gmail.com
1
1
2
5
0
1
083–1088; (b) S. L. Mao, Y. Sun, G. A. Yu, C. Zhao, Z. J. Han, J.
Yuan, X. Zhu, Q. Yang and S. H. Liu, Org. Biomol. Chem., 2012, 10,
410–9417.
(B. Saikia).
9
1
(a) J. P. Corbet and G. Mignani, Chem. Rev., 2006, 106, 2651–2710;
b) S. R. Chemler, D. Trauner and S. J. Danishefsky, Angew. Chem.,
Int. Ed., 2001, 40, 4544–4568; (c) A. F. Littke and G. C. Fu, Angew.
Chem., Int. Ed., 2002, 41, 4176–4211; (d) L. Botella and C. Najera,
Angew. Chem., Int. Ed., 2002, 41, 179–181; (e) J. P. Stambuli, R.
Kuwano and J. F. Hartwig, Angew. Chem., Int. Ed., 2002, 41, 4746–
12 (a) B. H. Lipshutz, S. Ghorai, A. R. Abela, R. Moser, T. Nishikata, C.
Duplais, A. Krasovskiy, R. D. Gaston and R. C. Gadwood, J. Org.
Chem., 2011, 76, 4379–4391; (b) J. Zhi, D. Song, Z. Li, X. Lei and
A. Hu, Chem. Commun., 2011, 47, 10707–10709; (c) B. H. Lipshutz,
T. B. Petersen and A. R. Abela, Org. Lett., 2008, 10, 1333–1336.
(
3
1
1
1
1
1
1
00 13 (a) V. Polshettiwar and R. S. Varma, Acc. Chem. Res., 2008, 41,
4
748; (f) O. Navarro, R. A. Kelly and S. P. Nolan, J. Am. Chem. Soc.,
6
3
2
29–639; (b) B. A. Roberts and C. R. Strauss, Acc. Chem. Res., 2005,
8, 653–661; (c) N. E. Leadbeater, Chem. Commun., 2005, 2881–
902; (d) C. O. Kappe, Angew. Chem. Int. Ed., 2004, 43, 6250–6284;
35
40
45
50
55
60
2003, 125, 16194–16195.
2
(a) N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457–2483; (b)
N. Miyaura and A. Suzuki, Chem. Commun., 1979, 19, 866–867; (c)
A. Suzuki, Angew. Chem. Int. Ed., 2011, 50, 6723–6737; (d) K. C.
Nicolaou, P. G. Bulger and D. Sarlah, Angew. Chem. Int. Ed., 2001,
40, 4442–4489; (e) S. R. Chemler, D. Trauner and S. J. Danishefsky,
Angew. Chem., Int. Ed., 2001, 40, 4544–4568; (f) J. Magano and J. R.
Dunetz, Chem. Rev., 2011, 111, 2177– 2250; (g) A. Molnár, Chem.
Rev., 2011, 111, 2251–2320; (h) L. Yin and J. Liebscher, Chem. Rev.,
(e) C. J. Li, Angew. Chem. Int. Ed., 2003, 42, 4856–4858.
05 14 (a) A. L. F. Souza, L. C. Silva, B. L. Oliveir and O. A. C. Antunes,
Tetrahedron Lett., 2008, 49, 3895–3898; (b) V. Polackova, M.
Hut’ka and S. Toma, ultrason. Sonochem., 2005, 12, 99–102.
1
5
(a) J. BastosꢀArrieta, A. Shafir, A. Alonso, M. Munoz, J. Macanas
and D. N. Muraviev, Catalysis Today, 2012, 193, 207–212; (b) S.
Bhunia, R. Sen and S. Koner, Inorg. Chim. Acta, 2010, 363, 3993–
10
2
007, 107, 133–173.
3
999.
3
4
(a) M. Eissen, Chem. Educ. Res. Pract., 2012, 13, 103–111; (b) I.
Eilks and F. Rauch, Chem. Educ. Res. Pract., 2012, 13, 57–58; (c) J.
Liu, Science, 2010, 328, 50; (d) D. Rowe, Science, 2007, 317, 323–
1
6
(a) B. Basu, K. Biswas, S. Kundu and S. Ghosh, Green Chem., 2010,
1
8
Sakurai, A. Tanaka, K. Endo, U. Bora, T. Kurita, A. Kozaki, Y.
Monguchi and H. Sajiki, Chem. –Eur. J., 2007, 13, 5937–5947.
(a) A. N. Marziale, D. Jantke, S. H. Faul, T. Reiner, E. Herdtweck
and J. Eppinger, Green Chem., 2011, 13, 169–177; (b) K. M.
Dawood and M. M. ElꢀDeftar, ARKIVOC, 2010, 319–330.
2, 1734–1738; (b) S. Shi and Y. Zhang, Green Chem., 2008, 10,
68–872; (c) T. Maegawa, Y. Kitamura, S. Sako, T. Udzu, A.
3
24.
15
(a) P. T. Anastas, J. C. Warner, In: Green Chemistry: Theory and
Practice; Oxford University Press: Oxford, 1998; (b) M. O. Simon
and C. J. Li, Chem. Soc. Rev., 2012, 41, 1415–1427; (c) P. T. Anastas
and N. Eghbali, Chem. Soc. Rev., 2010, 39, 301–312; (d) M. Carril,
R. SanMartin and E. Dominguez, Chem. Soc. Rev., 2008, 37, 639–
1
7
20 18 E. Avela, S. Aspelund, B. Holmbom and B. Melander in
Sucrochemistry (ACS Symp. Ser. 41) (Ed.: J. L. Hickson), ACS,
Washington, 1977, pp. 62–76.
6
47; (e) K. H. Shaughnessy, Eur. J. Org. Chem., 2006, 1827–1835;
(e) J. M. DeSimone, Science, 2002, 297, 799–803.
W. J. W. Watson, Green Chem., 2012, 14, 251–259.
5
6
1
9
S. Herdin, G. Kettenbach and P. Kluefers, Z. Naturforsch., 2004, 59,
34–139.
(a) V. Polshettiwar, A. Decottignies, C. Len and A. Fihri,
ChemSusChem, 2010, 3, 502–522; (b) M. Lamblin, L. NassarꢀHardy,
J.ꢀC. Hierso, E. Fouquet and F.ꢀX. Felpin, Adv. Synth. Catal., 2010,
352, 33–79; (c) C.ꢀJ. Li, Chem. Rev., 2005, 105, 3095–3166; (d) C.ꢀJ.
Li, Acc. Chem. Res., 2002, 35, 533–538.
1
25 20 R. Ahlrichs, M. Ballauff, K. Eichkorn, O. Hanemann, G. Kettenbach
and P. Klüfers, Chem. –Eur. J., 1998, 4, 835–844.
4
| Journal Name, [year], [vol], 00–00
This journal is © The Royal Society of Chemistry [year]