Angewandte Chemie International Edition
10.1002/anie.201809945
COMMUNICATION
model is proposed as a new strategy for obtaining RTP. We
have established that selectively attaching a methyl group to the
OP molecule can stabilize either the PICT geometry in OPM, or
the TICT geometry in the isomer OMP. White light emission from
OPM is a result of dual emissive processes according to the
PICT mechanism. This rational conformational control has led to
efficient utilization of triplet states for RTP in OPM and for TADF
in OMP. Related luminescent D–A molecules can be developed
using these guidelines.
Lien, M. R. Bryce, Chem. Sci. 2016, 7, 2201–2206; c) M. Okazaki, Y.
Takeda, P. Data, P. Pander, H. Higginbotham, A. P. Monkman, S.
Minakata, Chem. Sci. 2017, 8, 2677–2686.
[
10] a) N. Aizawa, C-J. Tsou, I. S. Park, T. Yasuda, Polym. J. 2017, 49,
1
97–202; b) L-S. Cui, H. Nomura, Y. Geng, J. U. Kim, H. Nakanotani, C.
Adachi, Angew. Chem. Int. Ed. 2017, 56, 1571–1575; Angew. Chem.
017, 129, 1593–1597;c) J. S. Ward, R. S. Nobuyasu, A. S. Batsanov,
2
P. Data, A. P. Monkman, F. B. Dias, M. R. Bryce, Chem. Commun.
2016, 52, 2612–2615.
[11] a) S. I. Druzhinin, P. Mayer, D. Stalke, R. Bülow, M. Noltemeyer, K. A.
Zachariasse, J. Am. Chem. Soc. 2010, 132, 7730–7744; b) H. Naito, K.
Nishino, Y. Morisaki, K. Tanaka, Y. Chujo, Angew. Chem. Int. Ed. 2017,
Keywords: room termperature phosphorescence • thermally
activated delayed fluorescence • charge transfer • donor–
acceptor systems • polymorphism
56, 254–259; Angew. Chem. 2017, 129, 260–265.
[
12] N. Mataga, T. Okada and H. Masuhara, Dynamics and Mechanisms of
Photoinduced Electron Transfer and Related Phenomena; Elsevier:
Amsterdam, 1992.
[
13] Z. Xie, Q. Huang, T. Yu, L. Wang, Z. Mao, W. Li, Z. Yang, Y. Zhang, S.
Liu, J. Xu, Z. Chi, M. P. Aldred, Adv. Funct. Mater. 2017, 27, 1703918.
14] M. J. Frisch, et al., Gaussian 09 (Revision D.01), Gaussian Inc.,
[1]
a) M. Kasha, H. R. Rawls, Photochem. Photobiol. 1968, 7, 561–569; b)
D. Di, A. S. Romanov, L. Yang, J. M. Richter, J. P. H. Rivett, S.
Jones, T. H. Thomas, M. Abdi Jalebi, R. H. Friend, M. Linnolahti, M.
Bochmann, D. Credgington, Science 2017, 356, 159–163; c) Y. Liu, C.
Li, Z. Ren, S. Yan, M. R. Bryce, Nat. Rev. Mater. 2018, 3, 18020; d) X-
K. Chen, Y. Tsuchiya, Y. Ishikawa, C. Zhong, C. Adachi, J-L. Brédas,
Adv. Mater. 2017, 1702767; e) Y-Z. Shi, K. Wang, X. Li, G-L. Dai, W.
Liu, K. Ke, M. Zhang, S-L. Tao, C-J. Zheng, X-M. Ou, X-H. Zhang,
Angew. Chem. Int. Ed. 2018, 57, 9480–9484; Angew. Chem. 2018, 130,
[
[
Wallingford CT, 2009.
15] a) L. Yao, S. Zhang, R. Wang, W. Li, F. Shen, B. Yang, Y. Ma, Angew.
Chem. Int. Ed. 2014, 53, 2119–2123; Angew. Chem. 2014, 126, 2151–
2155; b) D. Hu, L. Yao, B. Yang, Y. Ma, Phil. Trans. R. Soc. A 2015,
373: 20140318.
[16] T. Ogiwara, Y. Wakikawa, T. Ikoma, J. Phys. Chem. A 2015, 119, 3415–
3418.
9
624–9628; f) K. Wang, C-J. Zheng, W. Liu, K. Liang, Y-Z. Shi, S-L.
[17] CCDC 1495259, 1495260, 1495261, 1496581, 1496582, 1817433 and
1817434 contain the supplementary crystallographic data for this paper.
These data are available free of charge from the Cambridge
Crystallographic Data Centre.
Tao, C-S. Lee, X-M. Ou, X-H. Zhang, Adv. Mater. 2017, 29, 1701476;
g) R. Huang, J. S. Ward, N. A. Kukhta, J. Avo, J. Gibson, T. Penfold, J.
C. Lima, A. S. Batsanov, M. N. Berberan-Santos, M. R. Bryce, F. B.
Dias, J. Mater. Chem. C 2018, 6, 9238–9247.
[
2]
a) Z. An, C. Zheng, Y. Tao, R. Chen, H. Shi, T. Chen, Z. Wang, H. Li, R.
Deng, X. Liu, W. Huang, Nat. Mater. 2015, 14, 685–690; b) Z. He, W.
Zhao, J. W. Y. Lam, Q. Peng, H. Ma, G. Liang, Z. Shuai, B. Z. Tang,
Nat. Commun. 2017, 8, 416; c) W. Zhao, Z. He, J. W. Y. Lam, Q. Peng,
H. Ma, Z. Shuai, G. Bai, J. Hao, B. Z. Tang, Chem 2016, 1, 592–602.
D. Chaudhuri, E. Sigmund, A. Meyer, L. Röck, P. Klemm, S.
Lautenschlager, A. Schmid, S. R. Yost, T. Van Voorhis, S. Bange, S.
Höger, J. M. Lupton, Angew. Chem. Int. Ed. 2013, 52, 13449–13452;
Angew. Chem. 2013, 125, 13691–13694.
[
3]
4]
[
O. Bolton, K. Lee, H-J. Kim, K. Y. Lin, J. Kim, Nat. Chem. 2011, 3, 205–
210.
[
5]
6]
M. A. El-Sayed, J. Chem. Phys. 1963, 38, 2834–2838.
[
a) M. K. Etherington, J. Gibson, H. F. Higginbotham, T. J. Penfold, A. P.
Monkman, Nat. Commun. 2016, 7, 13680; b) P. K. Samanta, D. Kim, V.
Coropceanu, J-L. Brédas, J. Am. Chem. Soc. 2017, 139, 4042–4051; c)
̅
T. Matulaitis, P. Imbrasas, N. A. Kukhta, P. Baronas, T. Bučiunas, D.
Banevičius, K. Kazlauskas, J. V. Gražulevičius, S. Juršėnas, J. Phys.
Chem. C 2017, 121, 23618–23625; d) T. Ogiwara, Y. Wakikawa, T.
Ikoma, J. Phys. Chem. A 2015, 119, 3415–3418.
[
7]
8]
a) Z. R. Grabowski, K. Rotkiewicz, Chem. Rev. 2003, 103, 3899−4031;
b) Z. Zhang, C-L. Chen, Y-A. Chen, Y-C. Wei, J. Su, H. Tian, P-T. Chou,
Angew. Chem. Int. Ed. 2018, 57, 9880–9884; Angew. Chem. 2018, 130,
10028–10032.
[
a) J. Daub, R. Engl, J. Kurzawa, S. E. Miller, S. Schneider, A.
Stockmann, M. R. Wasielewski, J. Phys. Chem. A 2001, 105, 5655–
5665; b) A. Stockmann, J. Kurzawa, N. Fritz, N. Acar, S. Schneider, J.
Daub, R. Engl, T. Clark, J. Phys. Chem. A 2002, 106, 7958−7970; c) Z.
Xie, C. Chen, S. Xu, J. Li, Y. Zhang, S. Liu, J. Xu, Z. Chi, Angew. Chem.
Int. Ed. 2015, 54, 7181–7184; Angew. Chem. 2015, 127, 7287–7290; d)
J. Yang, J. Qin, P. Geng, J. Wang, M. Fang, Z. Li, Angew. Chem. Int.
Ed. 2018, 57, 14174–14178; Angew. Chem. 2018, 130, 14370–14374.
a) M. K. Etherington, F. Franchello, J. Gibson, T. Northey, J. Santos, J.
S. Ward, H. F. Higginbotham, P. Data, A. Kurowska, P. L. Dos Santos,
D. R. Graves, A. S. Batsanov, F. B. Dias, M. R. Bryce, T. J. Penfold, A.
P. Monkman, Nat. Commun. 2017, 8, 14987; b) B. Xu, Y. Mu, Z. Mao, Z.
Xie, H. Wu, Y. Zhang, C. Jin, Z. Chi, S. Liu, J. Xu, Y-C. Wu, P-Y. Lu, A.
[9]
This article is protected by copyright. All rights reserved.