A. Biffis et al.
FULL PAPER
Meyer, Organometallics 2003, 22, 3016–3018; d) X. Hu, I. Cas-
tro-Rodriguez, K. Meyer, J. Am. Chem. Soc. 2003, 125, 12237–
12245.
The mixture was maintained at the desired temperature whilst stir-
ring for 17 h. After this time, the reaction mixture was evaporated
to dryness and analysed by H NMR spectroscopy in CDCl3 using
1
[10] a) C. Tubaro, A. Biffis, E. Scattolin, M. Basato, Tetrahedron
2008, 64, 4187–4195; b) C. Tubaro, A. Biffis, E. Scattolin, M.
Basato, G. Papini, C. Santini, E. Alvarez, S. Conejero, Dalton
Trans. 2009, 7223–7229.
4-bis(trimethylsilyl)benzene as internal standard. The products
1
were identified by comparison of the H NMR spectra with litera-
ture data.[22a,29]
[11] I. V. Shishkov, F. Rominger, P. Hofmann, Dalton Trans. 2009,
1428–1435.
[12] K. Matsumoto, N. Matsumoto, A. Ishii, T. Tsukuda, M. Hase-
gawa, T. Tsubomura, Dalton Trans. 2009, 6795–6801.
[13] S. Sabiah, C.-S. Lee, W.-S. Hwang, I. J. B. Lin, Organometallics
2010, 29, 290–293.
[14] C. Ellul, G. Reed, M. F. Mahon, S. I. Pascu, M. K. Whittlesey,
Organometallics 2010, 29, 4097–4104.
[15] a) V. Jurkauskas, J. P. Sadighi, S. L. Buchwald, Org. Lett. 2003,
5, 2417–2420.
[16] a) M. R. Fructos, T. R. Belderrain, M. C. Nicasio, S. P. Nolan,
H. Kaur, M. M. Díaz-Requejo, P. J. Pérez, J. Am. Chem. Soc.
2004, 126, 10846–10847; b) R. E. Gawley, S. Narayan, Chem.
Commun. 2005, 5109–5111; c) M. M. Díaz-Requejo, P. J. Pérez,
J. Organomet. Chem. 2005, 690, 5441–5450; d) M. R. Fructos,
P. de Fremont, S. P. Nolan, M. M. Díaz-Requejo, P. J. Pérez,
Organometallics 2006, 25, 2237–2241; e) M. M. Díaz-Requejo,
P. J. Pérez, Chem. Rev. 2008, 108, 3379–3394.
General Procedure for the Nitrene Insertion Reactions: The nitrene
source (0.263 mmol) and the copper(I) complex 3b (13.1 μmol,
10 mol-% [Cu]) were placed in a 50 mL two-necked round-bot-
tomed flask under an inert atmosphere. The flask was thermostat-
ted at the desired temperature (50 or 70 °C) and nitrene acceptor
(4 mL) was then added. If appropriate, molecular sieves (4 Å,
100 mg) were added at this stage. The mixture was maintained at
the desired temperature whilst stirring for 17 h. After this time the
reaction mixture was evaporated to dryness and analysed by 1H
NMR spectroscopy in CDCl3 using 4-bis(trimethylsilyl)benzene as
internal standard. The products were identified by comparison of
1
the H NMR spectra with literature data.[30]
Acknowledgments
We thank the Junta de Andalucía (grant number P07-02870) and
the Ministerio de Ciencia e Innovación (MICINN) (grant number
CTQ2008-00042) for funding.
[17] a) B. M. Trost, G. Dong, J. Am. Chem. Soc. 2006, 128, 6054–
6055; b) R. Liu, S. R. Herron, S. A. Fleming, J. Org. Chem.
2007, 72, 5587–5591; c) Q. Xu, D. H. Appella, Org. Lett. 2008,
10, 1497–1500; d) B. M. Trost, G. Dong, Chem. Eur. J. 2009,
15, 6910–6919; e) S. Simonovic, A. C. Whitwood, W. Clegg,
R. W. Harrington, M. B. Hursthouse, L. Male, R. E. Douthwa-
ite, Eur. J. Inorg. Chem. 2009, 1786–1795.
[18] I. J. B. Lin, C. S. Vasam, Coord. Chem. Rev. 2007, 251, 642–
670.
[19] X.-Q. Xiao, G.-X. Jin, Dalton Trans. 2009, 9298–9303.
[20] S. Ahrens, A. Zeller, M. Taige, T. Strassner, Organometallics
2006, 25, 5409–5415.
[21] I. I. F. Boogaerts, G. C. Fortman, M. R. L. Furst, C. S. J. Ca-
zin, S. P. Nolan, Angew. Chem. Int. Ed. 2010, 49, 8674–8677.
[22] a) D. A. Evans, M. M. Faul, M. T. Bilodeau, J. Am. Chem. Soc.
1994, 116, 2742–2753; b) W. Zhang, N. H. Lee, E. N. Jacobsen,
J. Am. Chem. Soc. 1994, 116, 425–426; c) S.-M. Au, J.-S. Hu-
ang, W.-Y. Yu, W.-H. Fung, C.-M. Che, J. Am. Chem. Soc.
1999, 121, 9120–9132; d) M. M. Díaz-Requejo, P. J. Pérez, M.
Brookhart, J. L. Templeton, Organometallics 1997, 16, 4399–
4402.
[1] For general references on NHC ligands, see: a) S. Diez-Gonza-
lez (Ed.), N-Heterocyclic Carbenes: From Laboratory Curiosi-
ties to Efficient Synthetic Tools, RSC Catalysis Series, RSC,
Cambridge, 2010; b) C. S. J. Cazin (Ed.), N-Heterocyclic Carb-
enes in Transition Metal Catalysis and Organocatalysis, in: Ca-
talysis by Metal Complexes, vol. 32, Springer, Heidelberg, Ger-
many, 2010; c) F. E. Hahn, M. C. Jahnke, Angew. Chem. 2008,
120, 3166; Angew. Chem. Int. Ed. 2008, 47, 3122; d) F. Glorius
(Ed.), N-Heterocyclic Carbenes in Transition Metal Catalysis,
in: Topics in Organometallic Chemistry, vol. 21, Springer, Hei-
delberg, Germany, 2007; e) S. P. Nolan (Ed.), N-Heterocyclic
Carbenes in Synthesis, Wiley-VCH, Weinheim, Germany, 2006.
[2] a) S. Diez-Gonzalez, N. Marion, S. P. Nolan, Chem. Rev. 2009,
109, 3612–3676; b) S. Diez-Gonzalez, S. P. Nolan, Aldrichim.
Acta 2008, 41, 43–51; c) S. Diez-Gonzalez, S. P. Nolan, Synlett
2007, 2158–2167.
[3] a) A. J. Arduengo, H. V. R. Dias, J. Calabrese, F. Davidson,
Organometallics 1993, 12, 3405–3409; b) H. G. Raubenheimer,
S. Cronje, P. H. van Rooyen, P. J. Olivier, J. G. Toerien, Angew.
Chem. 1994, 106, 687; Angew. Chem. Int. Ed. Engl. 1994, 33,
672–673; c) H. G. Raubenheimer, S. Cronje, P. J. Olivier, J.
Chem. Soc., Dalton Trans. 1995, 313–316.
[23] H. M. L. Davies, E. G. Antoulinakis, Org. React. 2004, 57, 1–
326.
[24] Y. Yamada, T. Yamamoto, M. Okawara, Chem. Lett. 1975,
361–362.
[25] C. A. Quezada, J. C. Garrison, M. J. Panzner, C. A. Tessier,
W. J. Young, Organometallics 2004, 23, 4846–4848.
[4] J. C. Y. Lin, R. T. W. Huang, C. S. Lee, A. Bhattacharyya, W. S. [26] F. M. Nachtigall, Y. E. Corilo, C. C. Cassol, G. Ebeling, N. H.
Hwang, I. J. B. Lin, Chem. Rev. 2009, 109, 3561–3598.
[5] a) J. A. Mata, M. Poyatos, E. Peris, Coord. Chem. Rev. 2007,
251, 841–859; b) A. T. Normand, K. J. Cavell, Eur. J. Inorg.
Chem. 2008, 2781–2800; c) M. Poyatos, J. A. Mata, E. Peris,
Chem. Rev. 2009, 109, 3677–3707.
[6] X. J. Wan, F. B. Xu, Q. S. Li, H. B. Song, Z. Z. Zhang, Inorg.
Chem. Commun. 2005, 8, 1053–1055.
Morgon, J. Dupont, M. N. Eberlin, Angew. Chem. 2008, 120,
157–160; Angew. Chem. Int. Ed. 2008, 47, 151–154.
[27] K. Okuyama, J. Sugiyama, R. Nagahata, M. Asai, M. Ueda,
K. Takeuchi, J. Mol. Catal. A 2003, 203, 21–27.
[28] a) J. S. Yadav, B. V. S. Reddy, P. Narayana Reddy, Adv. Synth.
Catal. 2004, 346, 53–56; b) J. P. Deleux, G. Leroy, J. Weiler,
Tetrahedron 1973, 29, 1135–1144.
[7] R. McKie, J. A. Murphy, S. R. Park, M. D. Spicer, S. Zhou,
Angew. Chem. 2007, 119, 6645–6648; Angew. Chem. Int. Ed.
2007, 46, 6525–6528.
[8] P. L. Arnold, A. C. Scarisbrick, A. J. Blake, C. Wilson, Chem.
Commun. 2001, 2340–2341.
[9] a) X. Hu, K. Meyer, J. Organomet. Chem. 2005, 690, 5474–
5484; b) X. Hu, Y. Tang, P. Gandzel, K. Meyer, Organometal-
lics 2003, 22, 612–614; c) X. Hu, I. Castro-Rodriguez, K.
[29] a) Y. Cui, C. He, J. Am. Chem. Soc. 2003, 125, 16202–16203;
b) G. Y. Gao, J. D. Harden, X. P. Zhang, Org. Lett. 2005, 7,
3191–3193.
[30] a) L. He, J. Yu, J. Zhang, X.-Q. Yu, Org. Lett. 2007, 9, 2277–
2280; b) A. K. Chakrabarti, A. Kondaskar, S. Rudrawar, Tetra-
hedron 2004, 60, 9085–9091.
Received: October 11, 2011
Published Online: January 18, 2012
1372
www.eurjoc.org
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2012, 1367–1372