Full Paper
[3] a) A. Monney, M. Albrecht, Coord. Chem. Rev. 2013, 257, 2420; b) L. Oeh-
ninger, R. Rubbiani, I. Ott, Dalton Trans. 2013, 42, 3269; c) W. Liu, R. Gust,
Chem. Soc. Rev. 2013, 42, 775; d) K. M. Hindi, M. J. Panzner, C. A. Tessier,
C. L. Cannon, W. J. Youngs, Chem. Rev. 2009, 109, 3859.
Synthesis of Complex 2: The same procedure as described for
complex 1, but using a solution of [IrCp*Cl2]2 (80 mg, 0.10 mmol)
in dichloromethane (8 mL) and a solution of the silver(I) complex
2a (52 mg, 0.05 mmol) in MeOH/dichloromethane (1:1) (15 mL);
yield 64 %. C36H44Cl2Ir2N4 (988.1): calcd. C 42.71, H 4.48, N 5.67;
[4] L. Mercs, M. Albrecht, Chem. Soc. Rev. 2010, 39, 1903.
[5]
[6]
R. H. Grubbs, Angew. Chem. Int. Ed. 2006, 45, 3760; Angew. Chem. 2006,
118, 3845.
a) E. A. B. Kantchev, C. J. O'Brien, M. G. Organ, Angew. Chem. Int. Ed.
2007, 46, 2768; Angew. Chem. 2007, 119, 2824; b) G. C. Fortman, S. P.
Nolan, Chem. Soc. Rev. 2011, 40, 5151.
1
found C 42.74, H 4.50, N 5.49. H NMR (300 MHz, CDCl3): δ = 1.61
(s, 30 H, CH3Cp*), 3.97 (s, 6 H, CH3), 4.71 (AB system, 4 H, CH2), 6.92
(s, 2 H, Him), 6.95 (s, 2 H, Him), 7.10 (s, 2 H, CHxylyl) ppm. 13C NMR
(75 MHz, CDCl3): δ = 9.3 (CH3Cp*), 37.0 (NCH3), 56.7 (CH2), 89.8
(CCp*), 120.6 (CH), 121.2 (CH), 133.2 (C), 137.0 (CH), 138.0 (C), 157.6
(NCN) ppm. MALDI (CHCl3; sinapinic acid in 75 % MeCN, 0.1 % TFA):
m/z (%) = 955.9 [M – Cl]+.
[7]
Y. Cheng, J. Sun, H. Yang, H. Xu, Y. Li, X. Chen, Z. Xue, Organometallics
2009, 28, 819.
[8]
[9]
[10]
P. L. Chiu, H. M. Lee, Organometallics 2005, 24, 1692.
F. E. Fernández, M. C. Puerta, P. Valerga, Organometallics 2011, 30, 5793.
a) J. Witt, A. Pöthig, F. E. Kühn, W. Baratta, Organometallics 2013, 32,
4042; b) W. Baratta, J. Schütz, E. Herdtweck, W. A. Herrmann, P. Rigo, J.
Organomet. Chem. 2005, 690, 5570.
Typical Procedure for the Catalytic Transfer Hydrogenation of
Ketones: The iridium complex (2.5 μmol) was introduced into an
oven-dried Schlenk flask and the ketone (0.5 mmol) and 2-propanol
were added under argon (total volume 4.85 mL). The yellow mixture
was refluxed (90 °C bath temperature) under argon for 5 min and
[11]
a) M. V. Jiménez, J. Fernández-Tornos, J. J. Pérez-Torrente, F. J. Modrego,
P. Garcıá-Orduña, L. A. Oro, Organometallics 2015, 34, 926; b) K. Riener,
M. J. Bitzer, A. Pöthig, A. Raba, M. Cokoja, W. A. Herrmann, F. E. Kühn,
Inorg. Chem. 2014, 53, 12767; c) S. Gülcemal, A. Gürhan Gökçe, B. Çetink-
aya, Inorg. Chem. 2013, 52, 10601; d) M. V. Jiménez, J. Fernández-Tornos,
J. J. Pérez-Torrente, F. J. Modrego, S. Winterle, C. Cunchillos, F. J. Lahoz,
L. A. Oro, Organometallics 2011, 30, 5493; e) A. Binobaid, M. Iglesias, D.
Beetstra, A. Dervisi, I. Fallis, K. J. Cavell, Eur. J. Inorg. Chem. 2010, 5426;
f) H. Türkmen, T. Pape, F. E. Hahn, B. Çetinkaya, Eur. J. Inorg. Chem. 2008,
5418.
a solution of NaOiPr (150 μL, 0.1 M, 0.015 mmol) in 2-propanol was
added. The reaction started and the mixture changed its colour.
With complex 1 the solution gradually turned into deep red,
whereas with 2 it became deep yellow. The reaction was sampled
by removing an aliquot of the reaction mixture and diethyl ether
was added (1:1 in volume). The solution was filtered through a short
silica pad and the conversion was determined by GC analysis
(ketone 0.1 M, Ir 0.5 mol-%, NaOiPr 3 mol-%).
[12]
a) S. Sabater, M. Baya, J. A. Mata, Organometallics 2014, 33, 6830; b) U.
Hintermair, J. Campos, T. P. Brewster, L. M. Pratt, N. D. Schley, R. H. Crab-
tree, ACS Catal. 2014, 4, 99; c) J. Campos, U. Hintermair, T. P. Brewster,
M. K. Takase, R. H. Crabtree, ACS Catal. 2014, 4, 973; d) W. B. Cross, C. G.
Daly, Y. Boutadla, K. Singh, Dalton Trans. 2011, 40, 9722; e) D. Gnanam-
gari, E. L. O. Sauer, N. D. Schley, C. Butler, C. D. Incarvito, R. H. Crabtree,
Organometallics 2009, 28, 321; f) A. P. da Costa, M. Viciano, M. Sanaú, S.
Merino, J. Tejeda, E. Peris, B. Royo, Organometallics 2008, 27, 1305; g) R.
Corberán, E. Peris, Organometallics 2008, 27, 1954; h) R. Corberán, M.
Sanaú, E. Peris, Organometallics 2007, 26, 3492; i) A. Bartoszewicz, R.
Marcos, S. Sahoo, A. K. Inge, X. Zou, B. Martín-Matute, Chem. Eur. J. 2012,
18, 14510.
F. Hanasaka, K.-i. Fujita, R. Yamaguchi, Organometallics 2006, 25, 4643.
a) D. Wang, D. Astruc, Chem. Rev. 2015, 115, 6621; b) J. Ito, H. Nishiyama,
Tetrahedron Lett. 2014, 55, 3133; c) R. Malacea, R. Poli, E. Manoury, Coord.
Chem. Rev. 2010, 254, 729; d) R. H. Morris, Chem. Soc. Rev. 2009, 38,
2282; e) W. Baratta, P. Rigo, Eur. J. Inorg. Chem. 2008, 4041; f) C. Wang,
X. Wu, J. Xiao, Chem. Asian J. 2008, 3, 1750.
Solid-State Structure Determination of Compound 2: Data for
compound 2 were collected at 203 K with a Bruker APEX II single-
crystal diffractometer, using Mo-Kα graphite-monochromated radia-
tion (λ = 0.71073 Å) and equipped with an area detector.[27] Com-
pound 2 crystallizes in the monoclinic system, space group P21/c,
with a = 11.2125(6) Å, b = 14.7547(8) Å, c = 13.6141(7) Å, β =
111.2420(10)°, V = 2099.25(19) Å3, Z = 2, μ = 6.747 mm–1, ρ =
1.835 g cm–3. Unique reflections: 6173, (Rint = 0.0468), final R =
0.0245, Rw = 0.0557, GOF = 1.039. The structure was solved by
direct methods with SHELXS-97 and refined against F2 with SHELXL-
97, with anisotropic thermal parameters for all non-hydrogen at-
oms.[28] The hydrogen atoms were placed in the ideal geometrical
positions.
[13]
[14]
CCDC-999051 contains the supplementary crystallographic data for
compound 2. These data can be obtained free of charge from The
data_request/cif.
[15]
[16]
[17]
A. Biffis, C. Tubaro, G. Buscemi, M. Basato, Adv. Synth. Catal. 2008, 350,
189.
C. Tubaro, A. Biffis, R. Gava, E. Scattolin, A. Volpe, M. Basato, M. M. Díaz-
Requejo, P. J. Perez, Eur. J. Org. Chem. 2012, 1367.
A. Volpe, A. Sartorel, C. Tubaro, L. Meneghini, M. Di Valentin, C. Graiff, M.
Bonchio, Eur. J. Inorg. Chem. 2014, 665.
Supporting Information (see footnote on the first page of this
article): NMR spectroscopic data for complexes 1 and 2.
[18]
[19]
Z. Xi, X. Zhang, W. Chen, S. Fu, D. Wang, Organometallics 2007, 26, 6636.
M. V. Baker, D. H. Brown, R. A. Haque, B. W. Skelton, A. H. White, J. Inclu-
sion Phenom. Macrocyclic Chem. 2009, 65, 97.
Acknowledgments
The University of Padova (HELIOS STPD08RCX) is acknowledged
for financial support.
[20]
a) R. Maity, A. Rit, C. Schulte to Brinke, C. G. Daniliuc, F. E. Hahn, Chem.
Commun. 2013, 49, 1011; b) R. Mainty, H. Koppetz, A. Hepp, F. E. Hahn,
J. Am. Chem. Soc. 2013, 135, 4966; c) R. Mainty, A. Rit, C.
Schulte to Brinke, J. Kösters, F. E. Hahn, Organometallics 2013, 32, 6174.
a) S. Sanz, A. Azua, E. Peris, Dalton Trans. 2010, 39, 6339; b) G. Su, X.-K.
Huo, G.-X. Jin, J. Organomet. Chem. 2011, 696, 533.
a) R. Zhong, Y.-N. Wang, X.-Q. Guo, Z.-X. Chen, X.-F. Hou, Chem. Eur. J.
2011, 17, 11041; b) R. Corberán, V. Lillo, J. A. Mata, E. Fernandez, E. Peris,
Organometallics 2007, 26, 4350; c) C.-F. Chang, Y.-M. Cheng, Y. Chi, Y.-C.
Chiu, C.-C. Lin, G.-H. Lee, P.-T. Chou, C.-C. Chen, C.-H. Chang, C.-C. Wu,
Angew. Chem. Int. Ed. 2008, 47, 4542; Angew. Chem. 2008, 120, 4618; d)
R. Corberán, M. Sanaú, E. Peris, J. Am. Chem. Soc. 2006, 128, 3974; e) A. P.
da Costa, M. Sanaú, E. Peris, B. Royo, Dalton Trans. 2009, 6960; f) R.
Corberán, M. Sanaú, E. Peris, Organometallics 2006, 25, 4002.
a) W. Baratta, M. Ballico, S. Baldino, G. Chelucci, E. Herdtweck, K. Siega,
S. Magnolia, P. Rigo, Chem. Eur. J. 2008, 14, 9148; b) W. Baratta, G. Chel-
Keywords: Iridium · Di(NHC) complexes · Hydrogenation ·
Metalation · Dinuclear complexes
[21]
[22]
[1] a) N-Heterocyclic Carbenes: From Laboratory Curiosities to Efficient Syn-
thetic Tools (Ed.: S. Diez-Gonzalez), RSC Catalysis Series, RSC, Cambridge,
UK, 2010; b) N-Heterocyclic Carbenes in Transition Metal Catalysis and
Organocatalysis (Ed.: C. S. J. Cazin), in: Catalysis by Metal Complexes,
Springer, Heidelberg, Germany, 2010, vol. 32.
[2] See for example: a) R. Corberán, E. Mas-Marza, E. Peris, Eur. J. Inorg. Chem.
2009, 1700; b) S. P. Nolan, Acc. Chem. Res. 2011, 44, 91; c) S. Gaillard,
C. S. J. Cazin, S. P. Nolan, Acc. Chem. Res. 2012, 45, 778.
[23]
Eur. J. Inorg. Chem. 2016, 247–251
250
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim