Journal of the American Chemical Society
Page 4 of 5
H.; Lee, J. W.; List, B.; Song, C. E., Angew. Chem. Int. Ed. 2013, 52,
NBoc-Paroxetine could be selectively alkylated at one of
the five aryl C–H positions to deliver 7b via an Ir-catalyzed
diborylation/mono-deborylation strategy followed by decar-
boxylative cross-coupling. Indometacin ethyl ester could be
diversified into two unique derivatives by employing either
Pd-catalyzed aryl chloride borylation followed by oxidative
coupling (7c), or Ir-catalyzed C–H borylation followed by
oxidative coupling (7d) to give the aryl acetate derivatives in
synthetically useful yields (63% and 53% oxidative coupling
yield respectively). These results support the prospect that
malonic half esters may be used as two carbon units to syn-
thesize and diversify drug-like molecules in medicinal chem-
istry campaigns by employing the reactivity platform de-
scribed herein.
12143-12147; (h) Li, C. K.; Breit, B., J. Am. Chem. Soc. 2014, 136, 862-
865; (i) Bahlinger, A.; Fritz, S. P.; Wennemers, H., Angew. Chem. Int. Ed.
2014, 53, 8779-8783.
1
2
3
4
5
6
7
8
4. (a) Shang, R.; Ji, D.-S.; Chu, L.; Fu, Y.; Liu, L., Angew. Chem. Int. Ed.
2011, 50, 4470-4474; (b) Feng, Y.-S.; Wu, W.; Xu, Z.-Q.; Li, Y.; Li, M.;
Xu, H.-J., Tetrahedron 2012, 68, 2113-2120. (c) For the Cu/Mg promoted
decarboxylative coupling of iododpyridines and a malonic half-ester at
100 ºC : Ho, J. Z.; Braun, M. P., J. Label Compd. Radiopharm. 2007, 50,
277-280. For examples of Pd-catalyzed cross-coupling of malonates fol-
lowed by thermal dealkyoxycarbonylation or deacylation see: d) Song, B.
R.; Rudolphi, F.; Himmler, T.; Goossen, L. J., Adv. Synth. Catal. 2011,
353, 1565-1574 e) Zeevaart, J. G.; Parkinson, C. J.; de Koning, C. B.;
Tetrahedron Lett. 2007, 48, 3289-3293. For the decarboxylative coupling
of oxalate monoesters with aryl boron reagents see (f) Miao, J.-M.; Fang,
P.; Jagdeep, S.; and Ge, H.-B. Org. Chem. Front. 2016, 3, 243-250.
5. Limited to t-Bu esters: (a) Biscoe, M. R.; Buchwald, S. L., Org. Lett.
2009, 11, 1773-1775; (b) Jorgensen, M.; Lee, S.; Liu, X. X.; Wolkowski,
J. P.; Hartwig, J. F., J. Am. Chem. Soc. 2002, 124, 12557-12565.
6. (a) Kosugi, M.; Negishi, Y.; Kameyama, M.; Migita, T., Bull. Chem.
Soc. Japan 1985, 58, 3383-3384; (b) Agnelli, F.; Sulikowski, G. A., Tet-
rahedron Lett. 1998, 39, 8807-8810; (c) Hama, T.; Liu, X. X.; Culkin, D.
A.; Hartwig, J. F., J. Am. Chem. Soc. 2003, 125, 11176-11177.
7. Alternative approaches: cross-coupling of α-halo esters and aryl nucle-
ophiles (a) Goossen, L. J., Chem. Commun. 2001, 669-670; photoredox
approaches (b) Jang, H. L.; Kim, H. T.; Cho, E. J.; Joo, J. M. Asian J. Org.
Chem. 2015, 4, 1386-1391; metal catalyzed carbonylations of benzyl
halides (c) Giroux, A.; Nadeau, C.; Han, Y. X., Tetrahedron Lett. 2000,
41, 7601-7604; iodide and acid mediated reductions of mendelic acids (d)
Milne, J. E.; Storz, Colyer, T. J.; Thiel, O. R.; Seran, M. D.; Larsen, R. D.;
Murry, J. A. J. Org. Chem. 2011, 76, 9519-9524; oxidative deaminative
arylation with aryl boronic acids (e) Wu, G. J.; Deng, Y. F.; Wu, C. Q.;
Zhang, Y.; Wang, J. B.; Angew. Chem. Int. Ed. 2014, 53, 10510-10514;
and silyl ketene acetal arylation with pyridine N-oxides (f) Londregan, A.
T.; Burford, K.; Conn, E. L.; Hesp, K. D., Org. Lett. 2014, 16, 3336-3339.
8. (a) Zuo, Z. W.; Ahneman, D. T.; Chu, L. L.; Terrett, J. A.; Doyle, A.
G.; MacMillan, D. W. C., Science 2014, 345, 437-440; (b) Zuo, Z. W.;
MacMillan, D. W. C., J. Am. Chem. Soc. 2014, 136, 5257-5260.
9. (a) Cornella, J.; Edwards, J. T.; Qin, T.; Kawamura, S.; Wang, J.; Pan,
C. M.; Gianatassio, R.; Schmidt, M.; Eastgate, M. D.; Baran, P. S., J. Am.
Chem. Soc. 2016, 138, 2174-2177; (b) Huihui, K. M. M.; Caputo, J. A.;
Melchor, Z.; Olivares, A. M.; Spiewak, A. M.; Johnson, K. A.; DiBene-
detto, T. A.; Kim, S.; Ackerman, L. K. G.; Weix, D. J., J. Am. Chem. Soc.
2016, 138, 5016-5019; (c) Wang, J.; Qin, T.; Chen, T.-G.; Wimmer, L.;
Edwards, J. T.; Cornella, J.; Vokits, B.; Shaw, S. A.; Baran, P. S., Angew.
Chem. Int. Ed. 2016, 55, 9676-9679.
10. C–C bond formation preceeds decarboxylation in Cu-catalyzed decar-
boxylative aldol reactions: Fortner, K. C.; Shair, M. D., J. Am. Chem. Soc.
2007, 129, 1032-1033.
11. Shi, W.; Liu, C.; Lei, A. W., Chem. Soc. Rev. 2011, 40, 2761-2776.
12. Qiao, J. X.; Lam, P. Y. S., In Boronic Acids: Preparation and Applica-
tions in Organic Synthesis, Medicine and Materials, 2 ed.; Hall, D. G., Ed.
Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2011; 315-361.
13. (a) Stevens, J. M.; MacMillan, D. W. C., J. Am. Chem. Soc. 2013, 135,
11756-11759; (b) Moon, P. J.; Halperin, H. M.; Lundgren, R. J., Angew.
Chem. Int. Ed. 2016, 55, 1894-1898.
14. Huang, F.; Quach, T. D.; Batey, R. A., Org. Lett. 2013, 15, 3150-3153.
15. Guo, F. H.; Clift, M. D.; Thomson, R. J., Eur. J. Org. Chem. 2012,
4881-4896.
16. N-Methylpyrrolidine (33%), N(n-Pr)3 (40%), DIPEA (71%), and
DABCO (21%) provide lower yields under the standard conditions.
17. Ishiyama, T.; Murata, M.; Miyaura, N., J. Org. Chem. 1995, 60, 7508-
7510.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
We have reported a new oxidative coupling method for
the mild and efficient construction of sp2–sp3 carbon–carbon
bonds.19 This decarboxylative α-arylation of malonic half
esters and amides proceeds at room temperature, in air, un-
der mildly basic conditions, and employs both a simple cop-
per catalyst and stable aryl boronic esters. In contrast with
existing enolate arylation chemistry, this oxidative strategy is
compatible with protic and electrophilic functional groups,
facilitating applications in late-stage functionalization. We
have demonstrated that biomimetic decarboxylative trapping
of malonate derivatives can provide new routes to the core of
drug molecules and should find immediate use in the prepa-
ration of aryl acetates and related derivatives in the context
of functional molecule synthesis.
Supporting Information
Experimental procedures and compound characterization
data. This material is available free of charge via the Internet
Corresponding Author
ACKNOWLEDGMENT
We thank NSERC Canada (DG, RTI, and Engage, CGS-D
fellowship to P.J.M.), the University of Alberta, and SV
ChemBioTech for support. Wenyu Qian (Alberta) is
acknowledged for checking the procedure and preparing 6a’.
REFERENCES
1. (a) Staunton, J.; Weissman, K. J., Nat. Prod. Rep. 2001, 18, 380-416;
(b) Smith, S.; Tsai, S.-C., Nat. Prod. Rep. 2007, 24, 1041-1072.
2. (a) Weaver, J. D.; Recio, A., III; Grenning, A. J.; Tunge, J. A., Chem.
Rev. 2011, 111, 1846-1913; (b) Rodriguez, N.; Goossen, L. J., Chem. Soc.
Rev. 2011, 40, 5030-5048; (c) Nakamura, S., Org. Biomol. Chem. 2014,
12, 394-405; (d) Pan, Y. H.; Tan, C. H., Synthesis 2011, 2044-2053.
3. (a) Lalic, G.; Aloise, A. D.; Shair, M. D., J. Am. Chem. Soc. 2003, 125,
2852-2853; (b) Magdziak, D.; Lalic, G.; Lee, H. M.; Fortner, K. C.; Alo-
ise, A. D.; Shair, M. D., J. Am. Chem. Soc. 2005, 127, 7284-7285; (c)
Blaquiere, N.; Shore, D. G.; Rousseaux, S.; Fagnou, K., J. Org. Chem.
2009, 74, 6190-6198; (d) Walker, M. C.; Thuronyi, B. W.; Charkoudian,
L. K.; Lowry, B.; Khosla, C.; Chang, M. C. Y., Science 2013, 341, 1089-
1094; (e) Saadi, J.; Wennemers, H., Nature Chem. 2016, 8, 276-280; (f)
Behenna, D. C.; Liu, Y. Y.; Yurino, T.; Kim, J.; White, D. E.; Virgil, S.
C.; Stoltz, B. M., Nature Chem. 2012, 4, 130-133; (g) Bae, H. Y.; Sim, J.
18. Ishiyama, T.; Takagi, J.; Hartwig, J. F.; Miyaura, N., Angew. Chem.
Int. Ed. 2002, 41, 3056-3058.
19. Preliminary mechanistic studies are suggestive of a Chan-Evans-Lam
type redox pathway in which C–C bond forming reductive elimination is
followed by decarboxylation. For a detailed mechanistic study of the
Chan-Evans-Lam reaction see King, A. E.; Ryland, B. L.; Brunold, T. C.;
Stahl, S. S., Organometallics 2012, 31, 7948-7957.
ACS Paragon Plus Environment