BULLETIN OF THE
Article
Proton-beam-irradiated WSe2
KOREAN CHEMICAL SOCIETY
5. I. Hasa, D. Buchholz, S. Passerini, J. Hassoun, ACS Appl.
Mater. Interfaces 2015, 7, 5206.
6. L. Xiao, Y. Cao, J. Xiao, W. Wang, L. Kovarik, Z. Nie,
J. Liu, Chem. Commun. 2012, 48, 3321.
7. F. Klein, B. Jache, A. Bhide, P. Adelhelm, Phys. Chem.
Chem. Phys. 2013, 15, 15876.
ambient atmosphere affected little on the local structure. In
case of proton beam irradiation on samples in ambient
atmosphere, radiolysis of solvents could not happen, result-
ing that no discernible change in the oxidation states of
each ions in WSe2.
8. M. Nath, C. N. R. Rao, Chem. Commun. 2001, 21, 2236.
9. D. Chao, C. Zhu, P. Yang, X. Xia, J. Liu, J. Wang, X. Fan,
S. V. Savilov, J. Lin, H. J. Fan, Z. X. Shen, Nat. Commun.
2016, 7, 12122.
10. K. Share, J. Lewis, L. Oakes, R. E. Carter, A. P. Cohn,
C. L. Pint, RSC Adv. 2015, 5, 101262.
11. W. Li, X. Wang, X. Zhang, S. Zhao, H. Duan, J. Xue, Sci.
Rep. 2015, 5, 9935.
12. V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano,
J. N. Coleman, Science 2013, 340, 1226419.
13. M.-H. Choi, Y.-J. Min, G.-H. Gwak, S.-M. Paek, J.-M. Oh,
J. Alloys Compd. 2014, 610, 231.
14. W.-J. Lee, Y.-G. Chun, S.-J. Jang, S.-M. Paek, J.-M. Oh,
J. Alloys Compd. 2017, 711, 611.
15. Y.-J. Min, W.-J. Lee, G.-H. Gwak, S.-M. Paek, J.-M. Oh,
Bull. Korean Chem. Soc. 2015, 36, 2627.
16. X. Wang, X. Chen, Y. Zhou, C. Park, C. An, Y. Zhou,
R. Zhang, C. Gu, W. Yang, Z. Yang, Sci. Rep. 2017, 7,
46694.
17. W. J. Schutte, J. L. De Boer, F. Jellinek, J. Solid State Chem.
1987, 70, 207.
Conclusion
It was demonstrated that proton beam irradiation can be
used for the development of new anode materials with
increased cyclability for NIB applications. According to
XRD and XAS results, the long-range order of crystals can
be controlled by mechanical exfoliation of WSe2 whereas
the local structure of WSe2 is modifiable by proton beam
irradiation. Electrochemical charge/discharge experiments
of the samples clearly revealed that the discharge capacity
and cyclability of the samples were enhanced after proton
beam treatment, emphasizing that the present synthetic
route using proton beam treatment could be extended to the
fabrication of new nanostructured NIB electrodes with
enhanced electrochemical properties.
Acknowledgments. We gratefully acknowledge financial
support from the National Research Foundation of Korea
(NRF: 2016M2B2A4912195, 2017M2B2A4049463, and
2015R1D1A3A01016279). This work was also partly sup-
ported by Dongil Culture and Scholarship Foundation of
Korea.
18. B. D. Cullity, Elements of X-Ray Diffraction, 2nd ed., Addi-
son-Wesley, Reading, MA, 1977.
19. S. Yamazoe, Y. Hitomi, T. Shishido, T. Tanaka, J. Phys.
Chem. C 2008, 112, 6869.
References
20. E. Prouzet, J. Heising, M. G. Kanatzidis, Chem. Mater. 2003,
15, 412.
1. N.-S. Choi, Z. Chen, S. A. Freunberger, X. Ji, Y.-K. Sun,
K. Amine, G. Yushin, L. F. Nazar, J. Cho, P. G. Bruce,
Angew. Chem. Int. Ed. 2012, 51, 9994.
21. S. M. Heald, E. A. Stern, Phys. Rev. B 1977, 16, 5549.
22. P. Le Fèvre, H. Magnan, D. Chandesris, Phys. Rev. B 2830,
1996, 54.
2. H. Li, Z. Wang, L. Chen, X. Huang, Adv. Mater. 2009,
21, 4593.
23. F. Chen, J. Wang, B. Li, C. Yao, H. Bao, Y. Shi, Mater. Lett.
2014, 136, 191.
3. X. Zeng, J. Li, N. Singh, Crit. Rev. Environ. Sci. Technol.
2014, 44, 1129.
4. Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii,
J. Cumings, C. Wang, Nat. Commun. 2014, 5, 4033.
24. K. Chen, W. Zhang, L. Xue, W. Chen, X. Xiang, M. Wan,
Y. Huang, ACS Appl. Mater. Interfaces 2017, 9, 1536.
25. C. C. Nguyen, T. Yoon, D. M. Seo, P. Guduru, B. L. Lucht,
ACS Appl. Mater. Interfaces 2016, 8, 12211.
Bull. Korean Chem. Soc. 2018
© 2018 Korean Chemical Society, Seoul & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
6