10.1002/ejic.201900126
European Journal of Inorganic Chemistry
FULL PAPER
1
4e: H-NMR (CDCl3, 400 MHz) δ 7.95 (d, 2H, J = 8.0 Hz), 7.77 (d, 2H, J
29Si-NMR (CDCl3, 80 MHz) δ -78.1 -78.2 -79.2 ppm. HR-FAB-MS (m/z):
= 8.4 Hz), 2.62 (s, 3H), 1.93-1.81 (m, 7H), 0.99-0.94 (m, 42H), 0.67-0.60
(m, 14H) ppm; 13C-NMR (CDCl3, 100 MHz) δ 198.4 138.3 137.8 127.2
26.7 25.7 25.7 23.9 23.8 22.5 22.4 ppm; 29Si-NMR (CDCl3, 80 MHz) δ -
67.0 -67.7 -81.4 ppm. HR-FAB-MS (m/z): calcd for C36H70O13Si8 [M+H]+,
935.3049; obs, 935.3041.
calcd for C50H42O13Si8 [M+H]+, 1078.0858; obs, 1075.0853.
5f: 1H-NMR (CDCl3, 400 MHz) δ 8.06 (s, 1H), 7.92 (d, 1H, J = 7.6 Hz),
7.77-7.68 (m, 14H), 7.68 (d, 1H), 7.45 (d, 1H, J = 7.6 Hz), 7.46-7.43 (m,
7H), 7.38-7.35 (m, 14H) ppm; 13C-NMR (CDCl3, 100 MHz) δ 137.5 134.3
134.2 131.6 131.0 130.9 130.4 130.1 130.0 129.9 128.4 128.0 128.0
127.5 127.5 125.5 122.8 ppm; 29Si-NMR (CDCl3, 80 MHz) δ -78.0 -78.2
ppm. HR-FAB-MS (m/z): calcd for C49H39F3O12Si8 [M+H]+, 1101.0626;
obs, 1101.0637.
4f: 1H-NMR (CDCl3, 400 MHz) δ 7.93 (s, 1H), 7.84 (d, 1H, J = 7.6 Hz),
7.68 (d, 1H, J = 8.0 Hz), 7.48 (t, 1H, J = 7.8 Hz), 1.94-1.82 (m, 7H), 0.99-
0.94 (m, 42H), 0.68-0.60(m, 14H) ppm; 13C-NMR (CDCl3, 100 MHz) δ
137.2 133.1 130.8 130.8 127.9 126.9 126.9 25.7 25.6 23.9 22.5 22.4
ppm; 29Si-NMR (CDCl3, 80 MHz) δ -66.9 -67.7 -67.8 -81.5 ppm. HR-FAB-
MS (m/z): calcd for C35H67F3O12Si8 [M+H]+, 961.2817; obs, 961.2820.
General Procedure C: A DMF solution (2 mL) of 1 (245 mg, 0.3 mmol),
aryl halide (0.45 mmol), Pd2(dba)3 (14 mg, 0.015 mmol), P(o-tol)3 (18 mg,
0.06 mmol) and iPr2EtN (2.3 mmol) was stirred for 1.5 h under nitrogen
atmosphere. After the reaction, toluene (75 mL) was added to the
reaction mixture, and the organic layer was washed with water. The
volatiles were removed under reduced pressure, and the residue was
subjected to flash column chromatography over silica gel (eluent:
hexane/EtOAc = 9/1). The product was purified by preparative HPLC
using CHCl3 as an eluent.
4h: 1H-NMR (CDCl3, 400 MHz) δ 7.51 (s, 4H), 1.91-1.82 (m, 7H), 0.98-
0.93 (m, 42H), 0.65-0.62 (m, 14H) ppm; 13C-NMR (CDCl3, 100 MHz)
δ135.6 130.9 130.7 125.2 25.7 23.9 22.5 22.4 ppm; 29Si-NMR (CDCl3, 80
MHz)
δ -67.1 -67.8 -67.9 -80.6 ppm. nano-ESI (m/z): calcd for
C34H67BrO12Si8Na [M+Na]+: 993.2; obs, 993.1.
4i: 1H-NMR (CDCl3, 400 MHz) δ 7.89 (d, 1H, J = 7.2 Hz), 7.49-7.24 (m,
8H), 1.86-1.74 (m, 7H), 0.96-0.90 (m, 42H), 0.63-0.43 (m, 14H) ppm; 13C-
NMR (CDCl3, 100 MHz) δ 148.9 143.8 136.1 130.4 130.3 129.9 129.2
127.8 127.0 126.0 25.8 25.8 25.7 23.9 23.9 23.8 22.6 22.6 22.4 22.3
ppm; 29Si-NMR (CDCl3, 80 MHz) δ -66.8 -67.7 -67.9 -67.9 -87.1 ppm.
HR-FAB-MS (m/z): calcd for C40H72O12Si8 [M+H]+, 969.3257; obs,
969.3253.
4j: 1H-NMR (CDCl3, 400 MHz) δ 7.62 (d, 1H, J = 4.8 Hz), 7.64 (d, 1H, J =
2.4 Hz), 7.18 (dd, 1H, J = 4.8 and 3.6 Hz), 1.91-1.84 (m, 7H), 0.97-0.94
(m, 42H), 0.66-0.60 (m, 14H) ppm; 13C-NMR (CDCl3, 100 MHz) δ 136.5
131.5 130.3 127.8 25.7 25.7 23.9 22.5 22.4 ppm; 29Si-NMR (CDCl3, 80
MHz) δ -67.2 -67.5 -67.8 -83.7 ppm. HR-FAB-MS (m/z): calcd for
C32H66O12SSi8 [M+H]+, 899.2508; obs, 899.2507.
4k: 1H-NMR (CDCl3, 400 MHz) δ 8.81 (dd, 1H, J = 1.6 and 1.2 Hz), 8.64
(dd, 1H, J = 4.8 and 1.6 Hz), 7.92 (dt, 1H, J = 7.6 and 1.6 Hz), 7.28 (qd,
1H, J = 4.8 and 0.8 Hz), 1.90-1.80 (m, 7H), 0.98-0.94 (m, 42H), 0.65-0.60
(m, 14H) ppm; 13C-NMR (CDCl3, 100 MHz) δ 154.4 151.1 141.7 127.2
123.0 25.7 25.7 23.9 22.5 22.3 ppm; 29Si-NMR (CDCl3, 80 MHz) δ -66.8 -
67.0 -67.7 -81.1 ppm. HR-FAB-MS (m/z): calcd for C33H67NO12Si8 [M+H]+,
894.2896; obs, 894.2886.
Acknowledgments
This work was supported by JSPS KAKENHI Grant Number
JP18K19114. H. I. acknowledges Grant-in-Aid for Young
Scientists (B) (JSPS KAKENHI Grant Number JP17K14530).
General Procedure B: A DMF solution (2 mL) of 1 (245 mg, 0.3 mmol),
aryl halide (0.45 mmol), [Rh(cod)(MeCN)2]BF4 (6 mg, 0.015 mmol), and
iPr2EtN (2.3 mmol) was stirred for 1.5 h under nitrogen atmosphere. After
the reaction, toluene (75 mL) was added to the reaction mixture, and the
organic layer was washed with water. The volatiles were removed under
reduced pressure, and the residue was subjected to flash column
chromatography over silica gel (eluent: hexane/EtOAc = 1/1). The
product was purified by preparative HPLC using CHCl3 as an eluent.
Keywords: Arylation • Silsesquioxane • Pd catalyst • Rh catalyst
[1]
a) R. M. Laine, C. Zhang, A. Sellinger, L. Viculis, Appl. Organometal.
Chem. 1998, 12, 715; b) R. M. Laine, J. Mater. Chem. 2005, 15, 3725;
c) D. B. Cordes, P. D. Lickiss, F. Rataboul, Chem. Rev. 2010, 110,
2081; d) K. Tanaka, Y. Chujo, Bull. Chem. Soc. Jpn. 2013, 86, 1231; e)
Q. Ye, H. Zhou, J. Xu, Chem. Asian J. 2016, 11, 1322; f) K. Naka, Y.
Irie, Polym. Int. 2017, 66, 187; g) Z. Li, J. Kong, F. Wang, C. He, J.
Mater. Chem. C 2017, 5, 5283; h) H. Zhou, Q. Ye, J. Xu, Mater. Chem.
Front. 2017, 1, 212; i) H. Imoto, Polym. J. 2018, 50, 837.
5a: 1H-NMR (CDCl3, 400 MHz) δ 7.77-7.74 (m, 14H), 7.70 (d, 2H, J = 8.4
Hz), 7.46-7.42 (m, 7H), 7.37-7.34 (m, 14H), 6.91 (d, 2H, J = 8.8 Hz), 3.79
(s, 3H) ppm; 13C-NMR (CDCl3, 100 MHz) δ 161.7 135.9 134.2 130.8
130.3 130.3 127.9 121.3 113.6 55.0 ppm; 29Si-NMR (CDCl3, 80 MHz) δ -
77.4 -78.2 -78.3 ppm. HR-FAB-MS (m/z): calcd for C49H42O13Si8 [M+H]+,
1063.0858; obs, 1063.0868.
[2]
a) K. Tanaka, S. Adachi, Y. Chujo, J. Polym. Sci., Part A: Polym. Chem.
2009, 47, 5690; b) K. Tanaka, S. Adachi, Y. Chujo, J. Polym. Sci., Part
A: Polym. Chem. 2010, 48, 5712; c) J.-H. Jeon, K. Tanaka, Y. Chujo,
RSC Adv. 2013, 3, 2422; d) J.-H. Jeon, K. Tanaka, Y. Chujo, J. Polym.
Sci., Part A: Polym. Chem. 2013, 51, 3583; e) J.-H. Jeon, K. Tanaka, Y.
Chujo, J. Mater. Chem. A 2014, 2, 624; f) K. Ueda, K. Tanaka, Y. Chujo,
Polym. J. 2016, 48, 1133; g) K. Ueda, K. Tanaka, Y. Chujo, Bull. Chem.
Soc. Jpn. 2017, 90, 205; h) K. Tanaka, H. Kozuka, K. Ueda, J.-H. Jeon,
Y. Chujo, Mater. Lett. 2017, 203, 62; i) S. Yuasa, Y. Sato, H. Imoto, K.
Naka, J. Appl. Polym. Sci. 2018, 135, 46033.
5b: 1H-NMR (CDCl3, 400 MHz) δ 7.76-7.74 (m, 14H), 7.65 (d, 2H, J = 8.0
Hz), 7.46-7.42 (m, 7H), 7.37-7.34 (m, 14H), 7.17 (d, 2H, J = 7.6 Hz), 2.34
(s, 3H) ppm; 13C-NMR (CDCl3, 100 MHz) δ 140.9 134.3 134.2 130.8
130.3 130.2 128.7 127.9 126.7 21.6 ppm; 29Si-NMR (CDCl3, 80 MHz) δ -
77.7 -78.3 -78.3 ppm. HR-FAB-MS (m/z): calcd for C49H42O12Si8 [M+H]+,
1047.0909; obs, 1047.9003.
[3]
For recent papers, see: a) Y. Fang, H. Ha, K. Shanmuganathan, C. J.
Ellison, ACS Appl. Mater. Interfaces 2016, 8, 11050; b) X. Zhou, X. Fan,
C. He, Macromolecules 2016 49, 4236; c) E. Carbonell, L. A. Bivona, L.
Fusaro, C. Aprile, Inorg. Chem. 2017, 56, 6393; d) D. Wang, R. Sun, S.
Feng, W. Li, H. Liu, Polymer 2017, 130, 218; e) A. Raghuvanshi, C.
Strohmann, J.-B. Tissot, S. Clément, A. Mehdi, S. Richeter, L. Viau, M.
Knorr, Chem. Eur. J. 2017, 23, 16479; f) C. Xing, L. Wang, L. Xian, Y.
1
5e: H-NMR (CDCl3, 400 MHz) δ 7.92 (d, 2H, J = 8.0 Hz), 7.86 (d, 2H, J
= 8.0 Hz), 7.77-7.74 (m, 14H), 7.45-7.43 (m, 7H), 7.38-7.34 (m, 14H),
2.58 (s, 3H) ppm; 13C-NMR (CDCl3, 100 MHz) δ 198.3 138.8 136.0 134.5
134.2 134.2 131.0 130.9 130.1 130.0 130.0 128.0 127.9 127.4 26.7 ppm;
This article is protected by copyright. All rights reserved.