Chemistry - A European Journal
10.1002/chem.201602849
COMMUNICATION
Krahl, T. Krause, G. Schlechtingen, H.-J. Knölker, Synlett 2007, 268–
272; h) R. Forke, A. Jäger, H.-J. Knölker, Org. Biomol. Chem. 2008, 6,
2481–2483; i) R. Forke M. P. Krahl, F. Däbritz, A. Jäger, H.-J. Knölker,
Synlett 2008, 1870–1876; j) K. K. Gruner, H.-J. Knölker, Org. Biomol.
Chem. 2008, 6, 3902–3904; k) S. Würtz, S. Rakshit, J. J. Neumann, T.
Dröge, F. Glorius, Angew. Chem. Int. Ed. 2008, 47, 7230–7233; Angew.
Chem. 2008, 120, 7340–7343; l) M. Schmidt, H.-J. Knölker, Synlett
2009, 2421–2424; m) T. Watanabe, S. Oishi, N. Fujii, H. Ohno, J. Org.
Chem. 2009, 74, 4720–4726; n) D. G. Pintori, M. F. Greaney, J. Am.
Chem. Soc. 2011, 133, 1209–1211; o) N. Ishida, Y. Nakanishi, T.
Moriya, M. Murakami, Chem. Lett. 2011, 40, 1047–1049; p) M.
Fuchsenberger, R. Forke, H.-J. Knölker, Synlett 2011, 2056–2058; q) L.
Huet, R. Forke, A. Jäger, H.-J. Knölker, Synlett 2012, 23, 1230–1234; r)
Y. Deng, A. K. Å. Persson, J.-E. Bäckvall, Chem. Eur. J. 2012, 18,
11498–11523; s) N. Yoshikai, Y. Wei, Asian J. Org. Chem. 2013, 2,
466–478; t) R. Hesse, K. K. Gruner, O. Kataeva, A. W. Schmidt, H.-J.
Knölker, Chem. Eur. J. 2013, 19, 14098–14111; u) V. P. Kumar, K. K.
Gruner, O. Kataeva, H.-J. Knölker, Angew. Chem. Int. Ed. 2013, 52,
11073–11077; Angew. Chem. 2013, 125, 11279–11283; v) R. Hesse, A.
Jäger, A. W. Schmidt, H.-J. Knölker, Org. Biomol. Chem. 2014, 12,
3866–3876; x) R. Che, Z. Wu, Z. Li, H. Xiang, X. Zhou, Chem. Eur. J.
2014, 20, 7258–7261; y) R. Hesse, O. Kataeva, A. W. Schmidt, H.-J.
Knölker, Chem. Eur. J. 2014, 20, 9504–9509; z) K. Saito, P. K.
Chikkade, M. Kanai, Y. Kuninobu, Chem. Eur. J. 2015, 21, 8365–8368.
T. Gensch, M. Rönnefahrt, R. Czerwonka, A. Jäger, O. Kataeva, I.
Bauer, H.-J. Knölker, Chem. Eur. J. 2012, 18, 770–776.
Keywords: C–H bond activation • metallacycles • palladium •
reaction mechanisms • reductive elimination
[1]
Selected reviews and accounts: a) E. Negishi, Acc. Chem. Res. 1982,
15, 340–348; b) J. K. Stille, Angew. Chem. Int. Ed. Engl. 1986, 25, 508–
524; Angew. Chem. 1986, 98, 504–519; c) N. Miyaura, A. Suzuki, Chem.
Rev. 1995, 95, 2457–2483; d) T. Hiyama, J. Organomet. Chem. 2002,
653, 58–61; e) J. Hassan, M. Sévignon, C. Gozzi, E. Schulz, M.
Lemaire, Chem. Rev. 2002, 102, 1359–1470.
[2]
[3]
a) C. Amatore, A. Jutand, Acc. Chem. Res. 2000, 33, 314–321; b) E.
Negishi, Handbook of Organopalladium Chemistry for Organic
Synthesis, John Wiley & Sons, Inc., 2002.
Selected reviews and accounts on Pd-catalyzed direct coupling: L.-C.
Campeau, K. Fagnou, Chem. Commun. 2006, 1253–1264; b) G. P.
McGlacken, L. M. Bateman, Chem. Soc. Rev. 2009, 38, 2447–2464; c)
X. Chen, K. M. Engle, D.-H. Wang, J.-Q. Yu, Angew. Chem. Int. Ed.
2009, 48, 5094–5115; Angew. Chem. 2009, 121, 5196–5217; d) F.
Bellina, R. Rossi, Tetrahedron 2009, 65, 10269–10310; e) L.
Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem. Int. Ed. 2009, 48,
9792–9826; Angew. Chem. 2009, 121, 9976–10011 f) L. Ackermann,
Chem. Commun. 2010, 46, 4866–4877; g) J. J. Mousseau, A. B.
Charette, Acc. Chem. Res. 2013, 46, 412–424.
[4] Selected reviews on Pd-catalyzed cross-dehydrogenative coupling: a) S.
You, J.-B. Xia, Top. Curr. Chem. 2010, 292, 165–194; b) C. Liu, H.
Zhang, W. Shi, A. Lei Chem. Rev. 2011, 111, 1780–1824; c) C. S.
Yeung, V. M. Dong, Chem. Rev. 2011, 111, 1215–1292; d) S. H. Cho, J.
Y. Kim, J. Kwak, S. Chang, Chem. Soc. Rev. 2011, 40, 5068–5083; e) X.
Bugaut, F. Glorius, Angew. Chem. Int. Ed. 2011, 50, 7479–7481; Angew.
Chem. 2011, 123, 7618–7620; f) B.-J. Li, Z.-J. Shi, Chem. Soc. Rev.
2012, 41, 5588–5598; g) D. R. Stuart, K. Fagnou, Top. Organomet.
Chem. 2013, 44, 91–119; h) Y. Wu, J. Wang, F. Mao, F. Y. Kwong,
Chem. Asian J. 2014, 9, 26–47.
[9]
[10] Crystallographic data for 2a (red crystals): C16H12O3Pd, M = 358.66 g
mol–1, crystal size: 0.31 × 0.25 × 0.26 mm3, monoclinic, space group
P21/n, a = 8.3419(6), b = 9.4988(7), c = 15.8730(12) Å, = 91.130(2)°,
V = 1257.50(16) Å3, Z = 4, calcd = 1.894 Mg/m3, = 1.479 mm–1, =
0.71073 Å, T = 150(2) K, range: 2.50–29.99°, reflections collected:
19752, independent: 3637 (Rint
= 0.0411), 183 parameters. The
structure was solved by direct methods and refined by full-matrix least-
squares on F2; final R indices [I > 2(I)]: R1 = 0.0255, wR2 = 0.0553;
maximal residual electron density: 0.443 e Å-3. CCDC-1480675 contains
the supplementary crystallographic data for this structure. These data
can be obtained free of charge from The Cambridge Crystallographic
[5] a) J. Wencel-Delord, T. Dröge, F. Liu, F. Glorius, Chem. Soc. Rev. 2011,
40, 4740–4761; b) J. Yamaguchi, A. D. Yamaguchi, K. Itami, Angew.
Chem. Int. Ed. Engl. 2012, 51, 8960–9009; Angew. Chem. 2012, 124,
9092–9142; c) T. Brückl, R. D. Baxter, Y. Ishihara, P. S. Baran, Acc.
Chem. Res. 2012, 45, 826–839; d) T. Gensch, M. N. Hopkinson, F.
Glorius, J. Wencel-Delord, Chem. Soc. Rev. 2016, 45, doi:
10.1039/C6CS00075D.
[11] Crystallographic data for 2b: C16H13NO2Pd, M = 357.67 g mol–1, crystal
size: 0.20 × 0.12 × 0.03 mm3, monoclinic, space group P21/n, a =
8.2620(5), b = 9.4443(5), c = 16.0679(9) Å, = 91.9950(10)°, V =
1253.00(12) Å3, Z = 4, calcd = 1.896 Mg/m3, = 1.480 mm–1, =
0.71073 Å, T = 150(2) K, range: 2.50–28.00°, reflections collected:
[6]
a) F. Ozawa, T. Hidaka, T. Yamamoto, A. Yamamoto, J. Organomet.
Chem. 1987, 330, 253–263; b) J. M. Brown, N. A. Cooley, Chem. Rev.
1988, 88, 1031–1046; c) K. Osakada, H. Onodera, Y. Nishihara,
Organometallics 2005, 24, 190–192; d) V. P. Ananikov, D. G. Musaev,
K. Morokuma, Organometallics 2005, 24, 715–723; e) S. R. Whitfield, M.
S. Sanford J. Am. Chem. Soc. 2007, 129, 15142–15143; f) T. Koizumi,
A. Yamazaki, T. Yamamoto, Dalt. Trans. 2008, 2, 3949–3952; g) M.
Pérez-Rodríguez, A. A. C. Braga, M. Garcia-Melchor, M. H. Pérez-
Temprano, J. A. Casares, G. Ujaque, Á. R. de Lera, R. Álvarez, F.
Maseras, P. Espinet, J. Am. Chem. Soc. 2009, 131, 3650–3657. More
stable diarylplatinum(II) analogues have frequently been used as model
compounds, for example: h) H. A. Brune, M. Falck, R. Hemmer, H. G.
Alt, Chem. Ber. 1984, 117, 2803–2814; i) S. Shekhar, J. F. Hartwig, J.
Am. Chem. Soc. 2004, 126, 13016–13027; j) R. Robinson, P. R. Sharp,
Organometallics 2010, 29, 1388–1395; k) T. Korenaga, K. Abe, A. Ko, R.
Maenishi, T. Sakai, Organometallics 2010, 29, 4025–4035.
19982, independent: 3023 (Rint
= 0.0156), 187 parameters. The
structure was solved by direct methods and refined by full-matrix least-
squares on F2; final R indices [I > 2(I)]: R1 = 0.0245, wR2 = 0.0548;
maximal residual electron density: 0.490 e Å-3. CCDC-1480676 contains
the supplementary crystallographic data for this structure. These data
can be obtained free of charge from The Cambridge Crystallographic
[12] Phosphanes have been shown to influence the direct coupling to biaryl
compounds; see for example: M. Lafrance, D. Lapointe, K. Fagnou,
Tetrahedron 2008, 64, 6015–6020; b) M. Wakioka, Y. Nakamura, Y.
Hihara, F. Ozawa, S. Sakaki, Organometallics 2014, 33, 6247–6252.
[13] a) B. A. Markies, A. J. Canty, J. Boersma, G. van Koten,
Organometallics 1994, 13, 2053–2058; b) J. M. Racowski, A. R. Dick, M.
S. Sanford, J. Am. Chem. Soc. 2009, 131, 10974–10983; c) M. P. Lanci,
M. S. Remy, W. Kaminsky, J. M. Mayer, M. S. Sanford, J. Am. Chem.
Soc. 2009, 131, 15618–15620; d) P. Sehnal, R. J. K. Taylor, I. J. S.
Fairlamb, Chem. Rev. 2010, 110, 824–889; e) A. J. Hickman, M. S.
Sanford, Nature 2012, 484, 177–185.
[7]
[8]
a) H.-J. Knölker, K. R. Reddy, Chem. Rev. 2002, 102, 4303–4427; b)
H.-J. Knölker, Curr. Org. Synth. 2004, 1, 309–331; c) H.-J. Knölker,
Chem. Lett. 2009, 38, 8–13; d) I. Bauer, H.-J. Knölker, Top. Curr. Chem.
2012, 309, 203–253; e) A. W. Schmidt, K. R. Reddy, H.-J. Knölker,
Chem. Rev. 2012, 112, 3193–3328.
[14] a) A. D. Ryabov, A. K. Yatsimirsky, Inorg. Chem. 1984, 23, 789–790; b)
A. D. Ryabov, Inorg. Chem. 1987, 26, 1252–1260.
a) H. Yoshimoto, H. Itatani, Bull. Chem. Soc. Jpn. 1973, 46, 2490–2492;
b) B. Åkermark, L. Eberson, E. Jonsson, E. Pettersson, J. Org. Chem.
1975, 40, 1365–1367; c) H.-J. Knölker, N. O’Sullivan, Tetrahedron 1994,
50, 10893–10908; d) H. Hagelin, J. D. Oslob, B. Åkermark, Chem. Eur.
J. 1999, 5, 2413–2416; e) H.-J. Knölker, W. Fröhner, K. R. Reddy,
Synthesis 2002, 557–564; f) M. P. Krahl, A. Jäger, T. Krause, H.-J.
Knölker, Org. Biomol. Chem. 2006, 4, 3215–3219; g) R. Forke, M. P.
[15] A. Berndt, M. Gruner, A. W. Schmidt, H.-J. Knölker, Synlett 2013, 24,
2102–2106.