Organic Letters
Letter
a
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, U.K.; fax: +44 1223 336033.
Table 3. Additional Substrate Scope
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by NSF (No. CHE 1463819). Dr.
Hongjun Zhou (UCSB) is acknowledged for assistance with
NMR spectroscopy. Dr. Dmitriy Uchenik and the UCSB mass
spectroscopy facility are thanked for assistance with mass-
spectroscopic analysis. We also thank Dr. Guang Wu (UCSB)
for assistance with X-ray crystallography.
REFERENCES
■
(1) Ireland, R. E.; Mueller, R. H.; Willard, A. K. J. Am. Chem. Soc.
1976, 98, 2868−2877.
(2) Ilardi, E. A.; Stivala, C. E.; Zakarian, A. Chem. Soc. Rev. 2009, 38,
3133−3148.
a
(3) (a) Kuilya, T. K.; Goswami, R. K. Org. Lett. 2017, 19, 2366−
2369. (b) Stivala, C.; Zakarian, A. J. Am. Chem. Soc. 2008, 130, 3774−
3776. (c) Xiao, Q.; Jackson, J. J.; Basak, A.; Bowler, J. M.; Miller, B.
G.; Zakarian, A. Nat. Chem. 2013, 5, 410−416. (d) He, C.; Zhu, C.;
Dai, Z.; Tseng, C.-C.; Ding, H. Angew. Chem., Int. Ed. 2013, 52,
13256−13260.
The substrate was treated with the indicated base at −78 °C
(KN(SiMe3)2) or −100 °C (LDA). Internal quench with Me3SiCl
was used for LDA. Isomer ratio determined by 1H NMR
spectroscopy. See the SI for details.
(4) (a) Kobayashi, H.; Eickhoff, J. A.; Zakarian, A. J. Org. Chem.
2015, 80, 9989−9999. (b) Jackson, J. J.; Kobayashi, H.; Steffens, S.;
Zakarian, A. Angew. Chem., Int. Ed. 2015, 54, 9971−9975. (c) Cannon,
J. S. Org. Lett. 2018, 20, 3883−3887. (d) Lacharity, J. J.; Fournier, J.;
Lu, P.; Mailyan, A. K.; Herrmann, A. T.; Zakarian, A. J. Am. Chem.
Soc. 2017, 139, 13272−13275. (e) Jamison, C. R.; Overman, L. E. Acc.
Chem. Res. 2016, 49, 1578−1586.
KN(SiMe3)2 in PhMe for a broad range of substrates. Most
importantly, non-chelation-controlled enolization could be
achieved in many cases through the use of LDA in THF
with an internal quench with Me3SiCl. Both systems showed
greater selectivity in the rearrangement of substrates with large
α-alkyl chains on the ester and highly substituted double
bonds. However, the selectivity patterns for non-chelation-
controlled enolization proved to be quite complex and were far
more sensitive to the structure of the ester. α-Alkoxy
propionate esters proved to be the most challenging substrates
for the LDA−THF system, and high selectivity for non-
chelation-controlled enolization products were observed only
for allylic esters with Z-substituted double bonds. We have
shown that, in many cases, both diastereomers of the Ireland−
Claisen rearrangement products can be accessed from the same
allylic ester simply by the choice of enolization reagent, which
is a finding that will prove useful in future synthesis planning.
(5) Moore, J. T.; Hanhan, N. V.; Mahoney, M. E.; Cramer, S. P.;
Shaw, J. T. Org. Lett. 2013, 15, 5615−5617.
(6) Whitesell, J. K.; Helbling, A. M. J. Org. Chem. 1980, 45, 4135−
4139. (d) Sato, T.; Tajima, K.; Fujisawa, T. Tetrahedron Lett. 1983,
24, 729−730.
(7) Bartlett, P. A.; Tanzella, D. J.; Barstow, J. F. J. Org. Chem. 1982,
47, 3941−3945.
(8) Burke, S. D.; Fobare, W. F.; Pacofsky, G. J. J. Org. Chem. 1983,
48, 5221−5228.
(9) Sato, T.; Tajima, K.; Fujisawa, T. Tetrahedron Lett. 1983, 24,
729−730.
(10) Picoul, W.; Urchegui, R.; Haudrechy, A.; Langlois, Y.
Tetrahedron Lett. 1999, 40, 4797−4800.
ASSOCIATED CONTENT
* Supporting Information
(11) (a) Feldman, K. S.; Selfridge, B. R. Tetrahedron Lett. 2012, 53,
825−828. (b) Yang, Y.; Fu, X.; Chen, J.; Zhai, H. Angew. Chem., Int.
Ed. 2012, 51, 9825−9828. (c) Gilbert, J. C.; Selliah, R. D. J. Org.
Chem. 1993, 58, 6255−6265.
■
S
The Supporting Information is available free of charge on the
1
Detailed experimental procedures, H and 13C NMR
spectra of all new compounds and HPLC trace analysis
of enantioenriched compounds (PDF)
Accession Codes
crystallographic data for this paper. These data can be obtained
D
Org. Lett. XXXX, XXX, XXX−XXX