2480
A. L. B. de Barros et al. / Bioorg. Med. Chem. Lett. 20 (2010) 2478–2480
Table 3
Table 4
Target/non-target ratio for 99mTc-MAG3 and 99mTc-MAG3-GA
Target/non-target ratio for 99mTc-MAG3 and 99mTc-MAG3-G obtained by gamma
camera images (%ID/cm2)A
Radiotracer
5 min
30 min
120 min
240 min
Radiotracer
5 min
30 min
120 min
240 min
99mTc-MAG3
1.22a 0.14
2.05b 0.25
1.22a 0.10
2.22b 0.24
1.16a 0.08
2.13b 0.12
1.10a 0.11
2.10b .24
99mTc-MAG3-G
99mTc-MAG3
1.23a 0.02
1.80b 0.10
1.09a 0.07
2.02b 0.09
1.18a 0.12
1.95b 0.12
1.13a 0.13
1.93b 0.06
99mTc-MAG3-G
A
The results are expressed as the mean S.D. (n = 5). The values were evaluated
by the Tukey-Kramer test. Different letters indicate statistically significant
differences.
A
The results are expressed as the mean S.D. (n = 3). The values were evaluated
by the Tukey-Kramer test. Different letters indicate statistically significant
differences.
group. After purification by column chromatography, a radiochemi-
cal purity superior to 90% was observed. The biodistribution studies
and the scintigraphic images in animals showed that 99mTc-MAG3-G
had a higher affinity for the tumor than the 99mTc-MAG3 complex.
These data suggest that the 99mTc-MAG3-G complex could be used
as a possible agent for identification of tumors. Further studies will
be carried out to evaluate the real potential of 6 for tumor diagnosis
and will be reported in due course.
Acknowledgments
We thank CNPq, CAPES and FAPEMIG for grant and fellowships.
References and notes
1. Chen, X.; Li, L.; Liu, F.; Liu, B. Bioorg. Med. Chem. Lett. 2006, 16, 5503.
2. Conti, P. S.; Lilien, D. L.; Hawley, K.; Keppler, J.; Grafton, S. T.; Bading, J. R. Nucl.
Med. Biol. 1996, 23, 717.
3. Celen, S.; Groot, T.; Balzarini, J.; Vuncky, K.; Terwinghe, C. Nucl. Med. Biol. 2007,
34, 283.
4. Schibli, R.; Dumas, C.; Petrig, J.; Spadola, L.; Scapozza, L.; Garcia-Garayoa, E.
Bioconjugate Chem. 2005, 16, 105.
5. Love, C.; Tomas, M. B.; Tronco, G. G.; Palestro, C. J. Radiographics 2005, 25, 1357.
6. Gu, J.; Yamamoto, H.; Fukunaga, H.; Danno, K.; Takemasa, I.; Ikeda, M.; Tatmusi,
M.; Sekimoto, M. Dig. Dis. Sci. 2006, 51, 2198.
Figure 1. Scintigraphic images with Ehrlich tumor-bearing mice 240 min after
injection of 99mTc-MAG3 (A) and 99mTc-MAG3-G (B). While under ketamine/xylazine
anesthesia, 3.7 MBq of 99mTc-MAG3 or 99mTc-MAG3-G was injected into the tail vein.
7. Teng, B.; Bai, Y.; Chang, Y.; Chen, S.; Li, Z. Bioorg. Med. Chem. Lett. 2007, 17,
3440.
8. Ozker, K.; Collier, B. D.; Lindner, D. J.; Kabasakal, L.; Liu, Y.; Krasnow, A. Z. Nucl.
Med. Commun. 1999, 20, 1055.
9. Banerjee, S. R.; Zubieta, J. A.; Babich, J. W. Inorg. Chim. Acta 2006, 359, 1603.
10. Bayly, S. R.; Fischer, C. L.; Storr, T.; Adam, M. J.; Orvig, C. Bioconjugate Chem.
2004, 15, 923.
11. Jurisson, S.; Berning, D.; Jia, W.; Dangshe, M. Chem. Rev. 1993, 93, 1137.
12. Jones, A. G. Radiochim. Acta 1995, 70/71, 289.
to 99mTc-MAG3-G in a tumor model. Similar results were also ob-
tained by our research group using a glucose derivative without
a phenolic group as spacer.14 The data presented in this work were
obtained with a molecule containing an aromatic group as spacer
between the sugar and the 99mTc ligand, easily obtained from com-
mercial available 1.
By the scintigraphic images there were no differences between
the right (tumor) and left (muscle) flanks in the uptake of 99mTc-
MAG3 (Fig. 1A). When the 99mTc-MAG3-G complex was injected,
a greater uptake of radioactivity by the right thigh occurred
(Fig. 1B). Quantitative analysis of scintigraphic images obtained
from Ehrlich tumor-bearing mice with 99mTc-MAG3-G presented
target/non-target ratios that were statistically higher than those
of the 99mTc-MAG3 complex (Table 4). These results showed the
tropism of the 99mTc-MAG3-G to the tumor during the whole
experiment.
13. Yang, D. J.; Kim, C.; Schechter, N. R.; Azhdarina, A.; Yu, D.; Oh, C. Radiology
2003, 226, 465.
14. de Barros, A. L. B.; Cardoso, V. N.; Mota, L. G.; Leite, E. A.; Oliveira, M. C.; Alves,
R. J. Bioorg. Med. Chem. Lett. 2009, 19, 2497.
15. Oloris, S. C. S.; Dagli, M. L. Z.; Guerra, J. L. Life Sci. 2002, 71, 717.
16. Ferreia, E.; Silva, A. E.; Serakides, R.; Gomes, M. G.; Cassali, G. D. Pathol. Res.
Pract. 2007, 203, 39.
17. Oh, S. J.; Ryu, J. S.; Yoon, E. J.; Bae, M. S.; Shoi, S. J.; Park, K. B. Appl. Radiat. Isot.
2006, 64, 207.
18. Fritzberg, A. R.; Kasina, S.; Eshima, D.; Johnson, D. L. J. Nucl. Med. 1986, 27, 111.
19. Eshima, D.; Taylor, A. Semin. Nucl. Med. 1992, 22, 61.
20. de Barros, A. L. B.; Cardoso, V. N.; Mota, L. G.; Alves, R. J. Bioorg. Med. Chem. Lett.
2010, 20, 315.
21. Diniz, S. O. F.; Siqueira, C. F.; Nelson, D. L.; Martin-Comin, J.; Cardoso, V. N. Braz.
Arch. Biol. Technol. 2005, 48, 89.
In summary, the D-glucose derivative 3 was coupled to Bz-MAG3
5, and the product of this reaction (Bz-MAG3-G, 6) formed a complex
22. Phillips, W. T. Adv. Drug Del. Rev. 1999, 37, 13.
with technetium-99m after removal of the benzoyl protecting