Organic Letters
Letter
(c) Gilbert, J. C.; Blackburn, B. K. Formal 1,6-Insertion of an
Alkylidenecarbene into a Carbon−Hydrogen Bond. Unveiling of a
Stepwise Reaction Mechanism. Tetrahedron Lett. 1990, 31, 4727.
(d) Ohira, S.; Okai, K.; Moritani, T. Generation of Alkylidene-
carbenes by the Alkenylation of Carbonyl Compounds with
Lithiotrimethyldiazomethane. J. Chem. Soc., Chem. Commun. 1992,
721. (e) Ohira, S.; Noda, I.; Mizobata, T.; Yamato, M. Synthesis of
Tertiary Alcohol from Secondary Alcohol via Intramolecular C−H
Insertion of Alkylidenecarbene. Tetrahedron Lett. 1995, 36, 3375.
(f) Kosaka, T.; Bando, T.; Shishido, K. New Asymmetric
Construction of the Benzylic Quaternary Stereogenic Center: an
Enantiocontrolled Access to (−)-α-Cuparenone. Chem. Commun.
1997, 13, 1167. (g) Taber, D. F.; Christos, T. E. Improved
Chemoselectivity in Intramolecular Alkylidene Carbene C−H
Insertion. Tetrahedron Lett. 1997, 38, 4927. (h) Taber, D. F.; Yu,
H. Synthesis of α-Necrodol: Unexpected Formation of a Cyclo-
propene. J. Org. Chem. 1997, 62, 1687. (i) Kitamura, T.; Tsuda, K.;
Fujiwara, Y. Novel Heteroaromatic C−H Insertion of Alkylidene-
carbenes. A New Entry to Furopyridine Synthesis. Tetrahedron Lett.
1998, 39, 5375. (j) Walker, L. F.; Connolly, S.; Wills, M. Synthesis of
2,5-Dihydrofurans via Alkylidene Carbene Insertion Reactions.
Tetrahedron Lett. 1998, 39, 5273. (k) Taber, D. F.; Christos, T. E.;
Neubert, T. D.; Batra, D. Cyclization of 1,1-Disubstituted Alkenes to
Cyclopentenes. J. Org. Chem. 1999, 64, 9673. (l) Green, M. P.;
Prodger, J. C.; Sherlock, A. E.; Hayes, C. J. A Convenient Method for
3-Pyrroline Synthesis. Org. Lett. 2001, 3, 3377. (m) Walker, L. F.;
Bourghida, A.; Connolly, S.; Wills, M. Synthesis of 2,5-Dihydrofurans
via Alkylidene Carbene Insertion Reactions. J. Chem. Soc., Perkin
Trans. 1 2002, 7, 965. (n) Wardrop, D. J.; Zhang, W.
Alkylidenecarbene Insertion at Anomeric C−H Bonds. Synthesis of
3-Deoxy-D-arabino-2-heptulosonic Acid (DAH) and 3-Deoxy-D-
manno-2-octulosonic Acid (KDO). Tetrahedron Lett. 2002, 43,
5389. (o) Hobley, G.; Stuttle, K.; Wills, M. Studies of Intramolecular
Alkylidene Carbene Reactions: an Approach to Heterocyclic Nucleo-
side Bases. Tetrahedron 2003, 59, 4739. (p) Wardrop, D. J.; Bowen, E.
G. A Formal Synthesis of (+)-Lactacystin. Chem. Commun. 2005,
5106. (q) Yun, S. Y.; Zheng, J.-C.; Lee, D. Stereoelectronic Effect for
the Selectivity in C−H Insertion of Alkylidene Carbenes and Its
Application to the Synthesis of Platensimycin. J. Am. Chem. Soc. 2009,
131, 8413. (r) Lee, S.; Lee, H.-Y. Construction of the ABC-Ring
System of Delnudine through Free Radical Cyclization and Alkylidene
Carbene CH Insertion. Bull. Korean Chem. Soc. 2010, 31, 557.
(s) Munro, K. R.; Male, L.; Spencer, N.; Grainger, R. S.
Diastereotopic Group Selectivity and Chemoselectivity of Alkylidene
Carbene Reactions on 8-Oxabicyclo[3.2.1]oct-6-ene Ring Systems.
Org. Biomol. Chem. 2013, 11, 6856. (t) Gholami, H.; Kulshrestha, A.;
Favor, O. K.; Staples, R. J.; Borhan, B. Total synthesis of
(−)-Salinosporamide A via a Late Stage C−H Insertion. Angew.
Chem., Int. Ed. 2019, 58, 10110. N−H insertion: (u) Yagi, T.;
Aoyama, T.; Shioiri, T. A New Two-Step Preparation of Pyrroles from
β-Amino Ketones Utilizing Trimethylsilyldiazomethane. Synlett 1997,
1997, 1063. O−H and O−Si insertion: (v) Miwa, K.; Aoyama, T.;
Shioiri, T. A New Synthesis of 5-Trimethylsilyl-2,3-dihydrofurans
from β-Trimethylsiloxyketones Utilizing Trimethylsilyldiazomethane.
Synlett 1994, 1994, 461.
2006, 12, 76. (f) Bichler, P.; Chalifoux, W. A.; Eisler, S.; Shi Shun, A.
L. K.; Chernick, E. T.; Tykwinski, R. R. Mechanistic Aspects of
Alkyne Migration in Alkylidene Carbenoid Rearrangements. Org. Lett.
2009, 11, 519. (g) Habrant, D.; Rauhala, V.; Koskinen, A. M. P.
Conversion of Carbonyl Compounds to Alkynes: General Overview
and Recent Developments. Chem. Soc. Rev. 2010, 39, 2007.
(4) (a) Berson, J. A.; Duncan, C. D.; Corwin, L. R. Relative
Diylophylic Reactivities of Olefins toward a Trimethylenemethane. J.
Am. Chem. Soc. 1974, 96, 6175. (b) Berson, J. A.; Corwin, L. R.;
Davis, J. H. Mechanistic Separation of Singlet and Triplet Reactions of
a Trimethylenemethane. Stereospecificity and Regiospecificity in the
Cycloadditions of 2-Isopropylidenecyclopentane-1,3-diyl to Olefins. J.
Am. Chem. Soc. 1974, 96, 6177. (c) Platz, M. S.; Berson, J. A. Absolute
Rates of Triplet-Triplet Dimerization and Cycloaddition of
Trimethylenemethane Biradicals. J. Am. Chem. Soc. 1976, 98, 6743.
(d) Rule, M.; Mondo, J. A.; Berson, J. A. Synthesis and Thermolysis of
5-Alkylidenebicyclo[2.1.0]pentanes. Generation and Dimerization of
Trimethylenemethane Triplet Biradicals by Bond Rupture of Strained
Hydrocarbons. J. Am. Chem. Soc. 1982, 104, 2209. (e) Lazzara, M. G.;
Harrison, J. J.; Rule, M.; Hilinski, E. F.; Berson, J. A. Observation of
Two Characteristic Methylenecyclopropane Stereomutations in a
System That Also Forms Trimethylenemethane Dimers. An
Experimental Connection between Putative and Directly Observed
Biradicals. J. Am. Chem. Soc. 1982, 104, 2233. (f) Salinaro, R. F.;
Berson, J. A. Implication of A Common Trimethylenemethane
Intermediate in Dimer Formation and Structural Methylenecyclopro-
pane Rearrangement of a Bicyclo[3.1.0]hex-1-ene to a 5-
Alkylidenebicyclo[2.1.0]pentane. J. Am. Chem. Soc. 1982, 104, 2228.
(g) Ogawa, H.; Aoyama, T.; Shioiri, T. Lithium Trimethylsilyldiazo-
methane: A Convenient Reagent for the Preparation of Cyclohepta-
[b]pyrrol-2-ones from N-Methylanilides of α-Keto Acids. Synlett
1994, 1994, 757. (h) Sakai, A.; Aoyama, T.; Shioiri, T. A New
Preparation of Methylenecyclopropanes Utilizing Trimethylsilyldiazo-
methane. Tetrahedron 1999, 55, 3687. (i) Lee, H.-Y.; Kim, W.-Y.; Lee,
S. Triquinanes from Linear Ketones via Trimethylenemethane Diyls.
Tetrahedron Lett. 2007, 48, 1407. (j) Zheng, J.-C.; Liu, H.; Lee, N.-K.;
Lee, D. Dimerization Behavior of Substituted Bicyclo[3.1.0]hex-1-ene
Derivatives. Eur. J. Org. Chem. 2014, 2014, 506.
(5) Zheng, J.-C.; Yun, S. Y.; Sun, C.; Lee, N.-K.; Lee, D. Selectivity
Control in Alkylidene Carbene-Mediated C−H Insertion and Allene
Formation. J. Org. Chem. 2011, 76, 1086.
(6) (a) Shioiri, T.; Aoyama, T.; Snowden, T.; Lee, D.; Gupta, S.
Trimethylsilyldiazomethane. In Encyclopedia of Reagents for Organic
Synthesis; Wiley, 2006; pp 1−15. (b) Li, J.; Sun, C.; Lee, D.
Cyclopropenation of Alkylidene Carbenes Derived from α-Silyl
Ketones. J. Am. Chem. Soc. 2010, 132, 6640. (c) O’Connor, M. J.;
Sun, C.; Guan, X.; Sabbasani, V. R.; Lee, D. Sequential 1,4-/1,2-
Addition of Lithiumtrimethylsilydiazomethane onto Cyclic Enones to
Induce C−C Fragmentation and N−Li Insertion. Angew. Chem., Int.
Ed. 2016, 55, 2222. (d) Lee, D.; Gupta, S. Trimethylsilyldiazo-
methane (TMSCHN2) in Carbon−Carbon and Carbon−Heteroatom
Bond-Forming Reactions. Aldrichimica Acta 2018, 51 (3), 77.
(7) For the rearrangement of azido cyclopropenes to triazines, see:
(a) Chandross, E. A.; Smolinsky, G. The Rearrangement of 1-Azido-
1,2,3-triphenylcyclopropene to 4,5,6-Triphenyl-v-triazine. Tetrahedron
(3) (a) Seyferth, D.; Marmor, R. S.; Hilbert, P. Reactions of
Dimethylphosphono-Substituted Diazoalkanes. (MeO)2P(O)CR
Transfer to Olefins and 1, 3-Dipolar Additions of (MeO)2P(O)C(N2)
R. J. Org. Chem. 1971, 36, 1379. (b) Gilbert, J. C.; Weerasooriya, U.
Diazoethenes: Their Attempted Synthesis from Aldehydes and
Aromatic Ketones by Way of the Horner-Emmons Modification of
the Wittig Reaction. A Facile Synthesis of Alkynes. J. Org. Chem.
1982, 47, 1837. (c) Miwa, K.; Aoyama, T.; Shioiri, T. Extension of the
Colvin Rearrangement Using Trimethylsilyldiazomethane. A New
Synthesis of Alkynes. Synlett 1994, 1994, 107. (d) Myers, A. G.;
Goldberg, S. D. Synthesis of the Kedarcidin Core Structure by a
Transannular Cyclization Pathway. Angew. Chem., Int. Ed. 2000, 39,
̈
Lett. 1960, 1, 19. (b) Neunhoeffer, H.; Votter, H.-D.; Ohl, H. 1.2.3-
Triazine, I. Chem. Ber. 1972, 105, 3695. (c) Closs, G. L.; Harrison, A.
M. Rearrangements, Pyrolysis, and Photolysis of Trimethylcyclopro-
penyl Azide. J. Org. Chem. 1972, 37, 1051.
(8) Gupta, S.; Lin, Y.; Xia, Y.; Wink, D. J.; Lee, D. Alder-ene
Reactions Driven by High Steric Strain and Bond Angle Distortion to
Form Benzocyclobutenes. Chem. Sci. 2019, 10, 2212.
(9) For the chemistry of α-azido ketones, see: Reviews: (a) Patonay,
́
́
́
́
T.; Konya, K.; Juhasz-Toth, E. Syntheses and Transformations of α-
Azido Ketones and Related Derivatives. Chem. Soc. Rev. 2011, 40,
2797. (b) Faiz, S.; Zahoor, A. F.; Rasool, N.; Yousaf, M.; Mansha, A.;
Zia-Ul-Haq, M.; Jaafar, H. Z. E. Synthesis and Consecutive Reactions
of α-Azido Ketones: A Review. Molecules 2015, 20, 14699.
Preparation: (c) Patonay, T.; Hoffman, R. V. A General and Efficient
2732. (e) Fu
̈
rstner, A.; Wuchrer, M. Concise Approach to the “Higher
Sugar” Core of the Nucleoside Antibiotic Hikizimycin. Chem. - Eur. J.
E
Org. Lett. XXXX, XXX, XXX−XXX