ARTICLES
23. Chudasama, V., Fitzmaurice, R. J. & Caddick, S. Hydroacylation of α,β-
α-oxidation to introduce both oxygen and halogen functionality,
oxidative dearomatization reactions and aerobic C–H amination
chemistry. We anticipate that aryl-iodide-catalysed aerobic oxi-
dation chemistry will provide new opportunities and strategies to
directly utilize O2 in sustainable chemical synthesis.
unsaturated esters via aerobic C–H activation. Nat. Chem. 2, 592–596 (2010).
24. Chudasama, V., Fitzmaurice, R. J., Ahern, J. M. & Caddick, S. Dioxygen
mediated hydroacylation of vinyl sulfonates and sulfones on water. Chem.
Commun. 46, 133–135 (2010).
25. Chudasama, V., Ahern, J. M., Fitzmaurice, R. J. & Caddick, S. Synthesis of
γ-ketophosphonates via aerobic hydroacylation of vinyl phosphonates.
Tetrahedron Lett. 52, 1067–1069 (2011).
26. Chudasama, V., Akhbar, A. R., Bahou, K. A., Fitzmaurice, R. J. & Caddick, S.
Metal-free hydroacylation of C=C and N=N bonds via aerobic C–H activation of
aldehydes, and reaction of the products thereof. Org. Biomol. Chem. 11,
7301–7317 (2013).
Note added in proof: After acceptance of our paper, we became
aware of a related manuscript (ref. 45) discussing aldehyde-pro-
moted aerobic oxidation of aryl iodides.
27. Paul, S. & Guin, J. Dioxygen-mediated decarbonylative C–H alkylation of
heteroaromatic bases with aldehydes. Chem. Eur. J. 21, 17618–17622 (2015).
28. Yamada, T., Takai, T., Rhode, O. & Mukaiyama, T. Direct epoxidation of olefins
catalyzed by nickel(II) complexes with molecular oxygen and aldehydes. Bull.
Chem. Soc. Jpn 64, 2109–2117 (1991).
29. Kaneda, K. et al. A convenient synthesis of epoxides from olefins using molecular
oxygen in the absence of metal catalysts. Tetrahedron Lett. 33, 6827–6830 (1992).
30. Mizuno, N., Weiner, H. & Finke, R. G. Co-oxidative epoxidation of cyclohexene
with molecular oxygen, isobutyraldehyde reductant, and the polyoxoanion-
supported catalyst precursor [(n-C4H9)4N]5Na3[(1,5-COD)Ir·P2W15Nb3O62].
The importance of key control experiments including omitting the catalyst and
adding radical-chain initiators. J. Mol. Catal. A 114, 15–28 (1996).
31. Nam, W., Kim, H. J., Kim, S. H., Ho, R. Y. N. & Valentine, J. S. Metal complex-
catalyzed epoxidation of olefins by dioxygen with co-oxidation of aldehydes. A
mechanistic study. Inorg. Chem. 35, 1045–1049 (1996).
Methods
General method for the oxidation of iodoarenes. In a typical experiment, a 20 ml
scintillation vial was charged with glacial AcOH (2 ml), iodoarene (0.401 mmol) and
CoCl2·6H2O (0.004 mmol, 1 mol%) and was fitted with a rubber septum. The reaction
vessel was purged with O2 for 5 min before acetaldehyde (4.07 mmol, 10.2 equiv.) was
added in one portion. The reaction mixture was stirred under 1 atm O2, delivered by
inflated balloon at 23 °C for 5 h. The solvent was removed in vacuo and the residue was
dissolved in CH2Cl2. The organic layer was washed with distilled water and extracted
with CH2Cl2 (3 × 7 ml). The organic layer was dried over MgSO4 and solvent was
removed in vacuo to afford the corresponding iodobenzene diacetate. The isolated
compounds were characterized by 1H and 13C NMR spectroscopies.
Data availability. The characterization data and experimental protocol that are
described in this paper are available within the paper and its Supplementary
Information, or from the corresponding authors upon request.
32. Das, P., Saha, D., Saha, D. & Guin, J. Aerobic direct C(sp2)–H hydroxylation of
2-arylpyridines by palladium catalysis induced with aldehyde auto-oxidation.
ACS Catal. 6, 6050–6054 (2016).
33. Larkin, D. R. The role of catalysts in the air oxidation of aliphatic aldehydes.
J. Org. Chem. 55, 1563–1568 (1990).
34. Lehtinen, C. & Brunow, G. Factors affecting the selectivity of air oxidation of
2-ethyhexanal, an α-branched aliphatic aldehyde. Org. Process Res. Dev. 4,
544–549 (2000).
35. Müller, P. & Godoy, J. Ru-catalyzed oxidations with iodosylbenzene derivatives.
Substituent effects on selectivity in oxidation of sulfides and alcohols. Helv.
Chim. Acta 66, 1790–1795 (1983).
36. Katritzky, A. R., Gallos, J. K. & Durst, H. D. Structure of and electronic
interactions in aromatic polyvalent iodine compounds: a 13C NMR study.
Magn. Reson. Chem. 27, 815–822 (1989).
37. Koser, G. F., Wettach, R. H., Troup, J. M. & Frenz, B. A. Hypervalent iodine. Crystal
structure of phenylhydroxytosyloxyiodine. J. Org. Chem. 41, 3609–3611 (1976).
38. Wolf, W., Chalekson, E. & Kobata, D. Structure and proof of structure of
benzodiiodoxole. J. Org. Chem. 32, 3239–3241 (1967).
39. Macikenas, D., Skrzypczak-Jankun, E. & Protasiewicz, J. D. A new class of
iodonium ylides engineered as soluble primary oxo and nitrene sources. J. Am.
Chem. Soc. 121, 7164–7165 (1999). .
40. Zhong, W., Yang, J., Meng, X. & Li, Z. BF3·OEt2-promoted diastereoselective
diacetoxylation of alkenes by PhI(OAc)2. J. Org. Chem. 76, 9997–10004 (2011).
41. Yamamoto, Y. & Togo, H. PhI-catalyzed α-tosylation of ketones with m-
chloroperbenzoic acid and p-toluenesulfonic acid. Synlett. 798–800 (2006).
42. Dohi, T. et al. Designer μ-oxo-bridged hypervalent iodine(III) organocatalysts for
greener oxidations. Chem. Commun. 46, 7697–7699 (2010).
Received 24 June 2017; accepted 12 September 2017;
published online 16 October 2017
References
1. Cavani, F. & Teles, J. H. Sustainability in catalytic oxidation: an alternative
approach or a structural evolution? ChemSusChem 2, 508–534 (2009).
2. Campbell, A. N. & Stahl, S. S. Overcoming the ‘oxidant problem’: strategies to
use O2 as the oxidant in organometallic C–H oxidation reactions catalyzed by Pd
(and Cu). Acc. Chem. Res. 45, 851–863 (2012).
3. Wertz, S. & Studer, A. Nitroxide-catalyzed transition-metal-free aerobic
oxidation processes. Green Chem. 15, 3116–3134 (2013).
4. Filatov, M., Reckien, W., Peyerimhoff, S. D. & Shaik, S. What are the reasons for the
kinetic stabilityof a mixture of H2 and O2?J. Phys. Chem. A 104, 12014–12020 (2000).
5. Borden, W. T., Hoffmann, R., Stuyver, T. & Chen, B. Dioxygen: what makes this
triplet diradical kinetically persistent? J. Am. Chem. Soc. 139, 9010–9018 (2017).
6. Ho, R. Y. N., Liebman, J. F. & Valentine, J. S. in Active Oxygen in Chemistry 1–23
(Blackie Academic and Professional, 1995).
7. McCann, S. D. & Stahl, S. S. Copper-catalyzed aerobic oxidations of organic
molecules: pathways for two-electron oxidation with a four-electron oxidant and
a one-electron redox-active catalyst. Acc. Chem. Res. 48, 1756–1766 (2015).
8. Stahl, S. S. Palladium oxidase catalysis: selective oxidation of organic chemicals
by direct dioxygen-coupled turnover. Angew. Chem. Int. Ed. 43, 3400–3420 (2004).
9. Wendlandt, A. E. & Stahl, S. S. Quinone-catalyzed selective oxidation of organic
molecules. Angew. Chem. Int. Ed. 54, 14638–14658 (2015).
10. Piera, J. & Bäckvall, J.-E. Catalytic oxidation of organic substrates by molecular
oxygen and hydrogen peroxide by multistep electron transfer—a biomimetic
approach. Angew. Chem. Int. Ed. 47, 3506–3523 (2008).
43. Lucchetti, N., Scalone, M., Fantasia, S. & Muñiz, K. An improved catalyst for
iodine(I/III)-catalyzed intermolecular C–H amination. Adv. Synth. Catal. 358,
2093–2099 (2016).
44. Yablonskii, O. P., Vinogradov, M. G., Kereselidze, R. V. & Nikishin, G. I. Mechanism
of the oxidation of aldehydes by oxygen. Bull. Acad. Sci. USSR 18, 272–275 (1969).
45. Miyamoto, K. et al. Iodoarene-catalyzed oxidative transformations using
molecular oxygen. Chem. Commun. 53, 9781–9784 (2017).
11. Yoshimura, A. & Zhdankin, V. V. Advances in synthetic applications of
hypervalent iodine compounds. Chem. Rev. 116, 3328–3435 (2016).
12. Zhdankin, V. V. Hypervalent Iodine Chemistry: Preparation, Structure and
Synthetic Applications of Polyvalent Iodine Compounds (Wiley, 2014).
13. Varvoglis, A. Hypervalent Iodine in Organic Synthesis (Academic, 1997).
14. Brand, J. P., González, D. F., Nicolai, S. & Waser, J. Benziodoxole-based hypervalent
iodine reagents for atom-transfer reactions. Chem. Commun. 47, 102–115 (2011).
15. Charpentier, J., Früh, N. & Togni, A. Electrophilic trifluoromethylation by use of
hypervalent iodine reagents. Chem. Rev. 115, 650–682 (2015).
16. Banik, S. M., Mennie, K. M. & Jacobsen, E. N. Catalytic 1,3-difunctionalization
via oxidative C–C bond activation. J. Am. Chem. Soc. 139, 9152–9155 (2017).
17. Mu, R. et al. An efficient catalytic aerobic oxidation of alcohols in water using
hypervalent iodine(V). Adv. Synth. Catal. 347, 1333–1336 (2005).
18. Uyanik, M., Fukatsu, R. & Ishihara, K. Bromine-catalyzed aerobic oxidation of
alcohols. Chem. Asian J. 5, 456–460 (2010).
Acknowledgements
The authors thank Texas A&M University and the Welch Foundation (A-1907) for
financial support.
Author contributions
A.M. and D.C.P. conceived of the project. A.M. and S.-M.H. carried out the experimental
work. A.M., S.-M.H. and D.C.P. analysed the data and wrote the manuscript.
Additional information
19. Reich, L. & Stivala, S. S. in Autoxidation of Hydrocarbons and Polyolefins 1–30
(Marcel Dekker, 1969).
20. Wöhler, F. & Liebig, J. Untersuchungen über das Radikal der Benzoesäure
[In German]. Liebigs Ann. 3, 249–282 (1832).
21. Bäckström, H. L. J. The chain-reaction theory of negative catalysis. J. Am. Chem.
Soc. 49, 1460–1472 (1927).
Supplementary information and chemical compound information are available in the
jurisdictional claims in published maps and institutional affiliations. Correspondence and
requests for materials should be addressed to D.C.P.
22. Baeyer, A. & Villiger, V. Benzoylwasserstoffsuperoxyd und die Oxydation
des Benzaldehyds an der Luft [In German]. Ber. Dtsch Chem. Ges. 33,
1569–1585 (1900).
Competing financial interests
A provisional patent has been filed on the aerobic oxidation of aryl iodides.
5
© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.