Organic Letters
Letter
Notes
intensity was observed (Figure 5B). Our result is in contrast to
that of Benavides and co-workers, in which around 30−40 μM
of H2S was generated from the reaction between 100 μM of
DADS and 2 mM GSH in less than 10 min.6
H2S imaging studies were conducted to evaluate the H2S
releasing activity of DADS/DATS in cell lines. The probe
(BCu) treated breast cancer MCF-7 cells were washed with
PBS thrice and then treated with 100 μM DADS, DATS, or
Na2S for another hour.8 As shown in Figure 6A, control or 100
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The authors thank the Agency for Science, Technology and
Research (A*Star) of Singapore for financial support (Grant
Number: 112 177 0036), Singapore Ministry of Education
(Grant Number: MOE2014-T2-1-134), and the support of a
Jiangsu Province Grant to NUSRI for Food Science and
Technology (platform 2).
REFERENCES
■
(1) (a) Wang, R. Antioxid. Redox Signaling 2010, 12, 1061.
(b) Hosoki, R.; Matsuki, N.; Kimura, H. Biochem. Biophys. Res.
Commun. 1997, 237, 527. (c) Abe, K.; Kimura, H. J. Neurosci. 1996, 16,
1066. (d) Elrod, J. W.; Calvert, J. W.; Morrison, J.; Doeller, J. E.;
Kraus, D. W.; Tao, L.; Jiao, X.; Scalia, R.; Kiss, L.; Szabo, C. Proc. Natl.
Acad. Sci. U. S. A. 2007, 104, 15560. (e) Yang, G.; Wu, L.; Jiang, B.;
Yang, W.; Qi, J.; Cao, K.; Meng, Q.; Mustafa, A. K.; Mu, W.; Zhang, S.
Science 2008, 322, 587.
(2) (a) Singh, S.; Padovani, D.; Leslie, R. A.; Chiku, T.; Banerjee, R. J.
J. Biol. Chem. 2009, 284, 22457. (b) Stipanuk, M. H.; Beck, P. W.
Biochem. J. 1982, 206, 267. (c) Shibuya, N.; Tanaka, M.; Yoshida, M.;
Ogasawara, Y.; Togawa, T.; Ishii, K.; Kimura, H. Antioxid. Redox
Signaling 2009, 11, 703.
(3) (a) Song, Z. J.; Ng, M. Y.; Lee, Z.-W.; Dai, W.; Hagen, T.; Moore,
P. K.; Huang, D.; Deng, L.-W.; Tan, C.-H. MedChemComm 2014, 5,
557. (b) Zhao, Y.; Biggs, T. D.; Xian, M. Chem. Commun. 2014, 50,
11788.
Figure 6. Fluorescence images of H2S generated from DATS in cell
line. MCF-7 cells were incubated with 20 μM H2S probe BCu for 2 h
and then washed and subjected to different treatments for another 1 h.
(A) Confocal images of the cells, (λex = 633 nm, λem > 650 nm). (B)
Average fluorescence intensity per cell in different groups; data were
represented as mean SEM, n = 3.
(4) Iciek, M.; Kwiecien, I.; Wlodek, L. Environ. Mol. Mutagen. 2009,
50, 247.
μM DADS treated cells gave off weak fluorescence. Yet, cells
treated with 100 μM DATS or Na2S produce much stronger
fluorescence. The fluorescence intensity per cell showed that
DATS treatment significantly elevated the fluorescence
intensity. In contrast, 100 μM DADS nearly had no effect
(Figure 6B). These results demonstrated that DATS was a
good H2S donor in cell lines, while DADS was not.
In conclusion, we found that DATS releases H2S instantly
through thiol−disulfide exchange with GSH in both chemical
and biological systems. DADS releases H2S sluggishly through
α-carbon nucleophilic substitution and does not lead to
significant H2S formation in cell lines. The previous
misunderstanding of DADS as a H2S donor is mainly attributed
to its DATS contamination in commercial samples. To avoid
misleading results, we suggest that the purity of DADS should
be carefully checked and clearly stated in all studies concerning
its health promoting effects. Slow H2S donors may be preferred
for cardiovascular health promotion, as it may help to maintain
H2S concentrations at “healthy” low levels for a longer period
of time. Rapid bursts of H2S, on the other hand, may lead to
toxic effects that could be utilized for anticancer or antibacterial
applications.
(5) Ried, K.; Frank, O. R.; Stocks, N. P. Eur. J. Clin. Nutr. 2013, 67,
64.
(6) Benavides, G. A.; Squadrito, G. L.; Mills, R. W.; Patel, H. D.;
Isbell, T. S.; Patel, R. P.; Darley-Usmar, V. M.; Doeller, J. E.; Kraus, D.
W. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 17977.
(7) (a) Hughes, M. N.; Centelles, M. N.; Moore, K. P. Free Radical
Biol. Med. 2009, 47, 1346. (b) Jacob, C.; Anwar, A.; Burkholz, T.
Planta Med. 2008, 74, 1580. (c) Kashfi, K.; Olson, K. R. Biochem.
Pharmacol. 2013, 85, 689. (d) Li, L.; Hsu, A.; Moore, P. K. Pharmacol.
Ther. 2009, 123, 386. (e) Nicholson, C. K.; Calvert, J. W. Pharmacol.
Res. 2010, 62, 289. (f) Olson, K. R. Am. J. Physiol. Regul. Integr. Comp.
Physiol. 2011, 301, R297. (g) Predmore, B. L.; Lefer, D. J.; Gojon, G.
Antioxid. Redox Signaling 2012, 17, 119.
(8) Wu, H.; Krishnakumar, S.; Yu, J.; Liang, D.; Qi, H.; Lee, Z. W.;
Deng, L. W.; Huang, D. Chem. - Asian J. 2014, 9, 3604.
(9) (a) Myers, A. G.; Cohen, S. B.; Kwon, B. M. J. Am. Chem. Soc.
1994, 116, 1255. (b) Chatterji, T.; Gates, K. S. Bioorg. Med. Chem. Lett.
2003, 13, 1349.
(10) Artaud, I.; Galardon, E. ChemBioChem 2014, 15, 2361.
(11) Galardon, E.; Padovani, D. Bioconjugate Chem. 2015, 26, 1013.
(12) Bailey, T. S.; Zakharov, L. N.; Pluth, M. D. J. Am. Chem. Soc.
2014, 136, 10573.
(13) Ida, T.; Sawa, T.; Ihara, H.; Tsuchiya, Y.; Watanabe, Y.;
Kumagai, Y.; Suematsu, M.; Motohashi, H.; Fujii, S.; Matsunaga, T.
Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 7606.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental details, LC-MS spectra, and supporting
AUTHOR INFORMATION
Corresponding Author
■
D
Org. Lett. XXXX, XXX, XXX−XXX