INTERACTION OF GLUTATHIONE WITH HYDROGEN PEROXIDE
271
4. Kritzinger, E.C., Bauer, F.F., and du Toit, W.J., J.
Agric. Food Chem., 2013, vol. 2, no. 61, p. 269. doi
10.1021/jf303665z
Reaction (XII) was added in order to relatively in-
crease WGSH in an excess of H2O2 (Fig. 1, curve 2). Re-
actions (IV), (IX), and (X), in which thiyl radicals are
formed, increase the rate of consumption of the ac-
5. Saito, S. and Kawabata, J., J. Agric. Food Chem., 2004,
vol. 26, no. 52, p. 8163.
ceptor (WA) and have almost no effect on WGSH
.
6. Winterbourn, C.C., and Metodieva, D., Methods Enzy-
mol., 1995, no. 251, p. 81.
Reactions (I)–(XIII) characterize the mechanism
of the interaction of GSH with H2O2. Reactions (XIV)
and (XV) occur upon the addition of radical acceptors,
and they simulate the kinetic curves of acceptor con-
sumption together with the other reactions.
The presented kinetic model with optimized rate
constants adequately describes the experimental con-
centration dependences of WA and WGSH (Fig. 1 and
Table 1) and the experimental kinetic curves of GSH
and A consumption in the reaction of GSH with H2O2
(Figs. 2 and 3).
7. Gambuti, A., Han, G., Peterson, A.L., and Water-
house, A.L., Am. J. Enol. Vitic., 2015, no. 66, p. 411.
8. Wang, Y., Qiao, M., Mieyal, J.J., Asmis, L.M., and
Asmis, R., Free Radical Biol. Med., 2006, no. 41, p.775.
9. Schafer, F.Q. and Buettner, G.R., Free Radical Biol.
Med., 2001, vol. 11, no. 30, p. 1191.
10. Anderson, M.E., Chem.– Biol. Interact., 1998, no. 112,
p. 1.
11. Penninckx, M.J., Enzyme Microb. Technol., 2000,
no. 26, p. 737.
12. Messens, J. and Collet, J.F., Antioxid. Redox Signaling,
2013, vol. 18, no. 13, p. 1205. doi 10.1089/ars.2012.5156
13. Sies, H., Oxidative Stress, London: Academic Press,
CONCLUSIONS
1985, p. 1.
Based on the experimentally obtained concentra-
tion dependences of the rate of GSH consumption and
the rate of radical formation in the reaction of GSH
with H2O2 (in an aqueous solution at 37°C), we devel-
oped a kinetic model of the interaction of GSH with
H2O2, which includes 15 reactions with the rate con-
stants optimized for the experimental conditions. The
model provides for the formation of GSH–H2O2 and
GSH–GSH complexes, which makes it possible to
describe nontrivial concentration dependences of the
rate of glutathione consumption at excessive compo-
nent concentrations and a relatively simple stoichiom-
etry of the overall reaction, according to which GSSG
disulfide accounts for no less than 95% of reacted glu-
tathione.
We found that the kinetic model satisfactorily
reflects not only the concentration dependences of the
rates WGSH and WA but also the experimental kinetic
curves. The oxidation of glutathione is accompanied
by the formation of radicals, the yield of which,
although small, is sufficient for initiating radical chain
processes.
14. Sies, H. and Jones, D.P., Encyclopedia of Stress, San
Diego: Elsevier, 2007, vol. 3, p. 45.
15. Reuter, S., Gupta, S.C., Chaturvedi, M.M., and
Aggarwal, B.B., Free Radical. Biol. Med., 2010, vol. 49,
no. 11, p. 1603.
16. Hopkins, F.G. and Morgan, E.J., Biochem J., 1936,
vol. 8, no. 30, p. 1446.
17. Hopkins, F.G. and Morgan, E.J., Biochem J., 1938,
vol. 3, no. 32, p. 611.
18. Kroemer, G. and Reed, J.C., Nat. Med., 2000, vol. 5,
no. 6, p. 513.
19. Wu, G., Fang, Y.Z., Yang, S., Lupton, J.R., and
Turner, N.D., J. Nutr., 2004, no. 134, p. 489.
20. Conway, J.G., Neptun, D.A., Garvey, L.K., and Popp, J.A.,
Carcinogenesis, 1987, no. 8, p. 999.
21. Townsend, D.M., Tew, K.D., and Tapiero, H., Biomed.
Pharmacother., 2003, vol. 57, p. 145.
22. Estrela, J.M., Ortega, A., and Obrador, E., Crit. Rev.
Clin. Lab. Sci., 2006, vol. 43, no. 2, p. 143. doi
10.1080/10408360500523878
23. Toyokuni, S., Front. Pharmacol., 2014, vol. 5, no. 200,
p. 1. doi 10.3389/fphar.2014.00200
24. Stavrovskaya, A.A., Biochemistry (Moscow), 2000,
vol. 1, no. 65, p. 95.
25. Guo, R., Yang, G., Feng, Z., Zhu, Y., Yang, P., Song, H.,
Wang, W., Huang, P., and Zhang, J., Biomater. Sci,
vol. 6, no. 5, p. 1238. doi 10.1039/c8bm00094h
26. Albrecht, S.C., Barata, A., Großhans, J., Teleman, A.A.,
and Dick, T.P., Cell Metab., 2011, no. 14, p. 819. doi
10.1016/j.cmet.2011.10.010
FUNDING
This work was supported by the Russian Founda-
tion for Basic Research (grant nos. 18-33-00742 and
17-03-00364).
27. Weschawalit, S., Thongthip, S., Phutrakool, P., and
Asawanonda, P., Clin., Cosmet. Invest. Dermatol., 2017,
no. 10, p. 147.
28. Altıntaşa, A., Davidsena, K., Gardea, C., Mortensena, U.H.,
Brasen, J.C., Sams, T., and Workman, C.T., Free Rad-
ical Biol. Med., 2016, no. 101, p. 143.
REFERENCES
1. Poole, L.B., Free Radical Biol. Med., 2015, vol. 80,
p. 148.
2. Winterbourn, C.C. and Metodiewa, D., Free Radical
Biol. Med., 1999, vol. 27, p. 322.
3. Kheirabadi, R. and Izadyar, M., J. Phys. Chem. A, 2016,
29. Marinho, H.S., Real, C., Cyrne, L., Soares, H., and
Antunes, F., Redox Biol., 2014, no. 2, p. 535.
vol. 51, no. 120, p. 10108. doi 10.1021/acs.jpca.6b11437 30. Sies, H., Redox Biol., 2017, no. 11, p. 613.
KINETICS AND CATALYSIS Vol. 60 No. 3 2019